%I #17 Apr 26 2023 07:05:26
%S 1,3,2,7,16,60,201,838,3407,14767,64200
%N Number of generalized polyforms on the rhombitrihexagonal tiling with n cells.
%C This sequence counts "free" polyforms where holes are allowed. This means that two polyforms are considered the same if one is a rigid transformation (translation, rotation, reflection or glide reflection) of the other.
%H Peter Kagey, <a href="/A344211/a344211.pdf">Illustration of a(3) = 7</a>.
%H George Sicherman, <a href="https://sicherman.net/bbcat/">Catalogue of Polybirds</a>.
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Rhombitrihexagonal_tiling">Rhombitrihexagonal tiling</a>
%Y Analogous for other tilings: A000105 (square), A000228 (hexagonal), A000577 (triangular), A197156 (prismatic pentagonal), A197159 (floret pentagonal), A197459 (rhombille), A197462 (kisrhombille), A197465 (tetrakis square), A309159 (snub square), A343398 (trihexagonal), A343406 (truncated hexagonal), A343577 (truncated square).
%K nonn,more,hard
%O 0,2
%A _Peter Kagey_, May 11 2021