login
A344194
a(n) = Sum_{k=1..n} tau(gcd(k,n))^gcd(k,n), where tau(n) is the number of divisors of n.
1
1, 5, 10, 87, 36, 4114, 134, 65629, 19705, 1048628, 2058, 2176786622, 8204, 268435614, 1073741928, 152587956347, 131088, 101559956696337, 524306, 3656158441111964, 4398046511420, 17592186046514, 8388630, 4722366482871822135514, 847288609591, 4503599627378748
OFFSET
1,2
FORMULA
a(n) = Sum_{d|n} phi(n/d) * tau(d)^d.
If p is prime, a(p) = 2^p - 1 + p.
MATHEMATICA
a[n_] := DivisorSum[n, EulerPhi[n/#] * DivisorSigma[0, #]^# &]; Array[a, 26] (* Amiram Eldar, May 11 2021 *)
PROG
(PARI) a(n) = sum(k=1, n, numdiv(gcd(k, n))^gcd(k, n));
(PARI) a(n) = sumdiv(n, d, eulerphi(n/d)*numdiv(d)^d);
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, May 11 2021
STATUS
approved