login
A344193
Numbers that are the sum of four fourth powers in exactly two ways
8
259, 2674, 2689, 2754, 2929, 3298, 3969, 4144, 4209, 5074, 6579, 6594, 6659, 6769, 6834, 7203, 7874, 8194, 8979, 9154, 9234, 10113, 10674, 11298, 12673, 12913, 13139, 14674, 14689, 14754, 16563, 16643, 16818, 17187, 17234, 17299, 17314, 17858, 18963, 19699, 20658, 20739, 20979, 21154, 21219, 21329, 21363
OFFSET
1,1
COMMENTS
Differs from A309763 at term 32 because 16578 = 1^4 + 2^4 + 9^4 + 10^4 = 2^4 + 5^4 + 6^4 + 11^4 = 3^4 + 7^4 + 8^4 + 10^4
LINKS
David Consiglio, Jr., Table of n, a(n) for n = 1..20000
EXAMPLE
2689 is a member of this sequence because 2689 = 2^4 + 2^4 + 4^4 + 7^4 = 2^4 + 3^4 + 6^4 + 6^4
PROG
(Python)
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**4 for x in range(1, 50)]
for pos in cwr(power_terms, 4):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v == 2])
for x in range(len(rets)):
print(rets[x])
KEYWORD
nonn
AUTHOR
STATUS
approved