login
A344192
Numbers that are the sum of three fourth powers in exactly two ways.
6
2673, 6578, 16562, 28593, 35378, 42768, 43218, 54977, 94178, 105248, 106353, 122018, 134162, 137633, 149058, 171138, 177042, 178737, 181202, 195122, 195858, 198497, 216513, 234273, 235298, 235553, 264113, 264992, 300833, 318402, 318882, 324818, 334802, 346673, 364658, 384833, 439922, 457488
OFFSET
1,1
COMMENTS
Differs from A309762 at term 59 because 811538 = 4^4 + 23^4 + 27^4 = 7^4 + 21^4 + 28^4 = 12^4 + 17^4 + 29^4
LINKS
David Consiglio, Jr., Table of n, a(n) for n = 1..10000
EXAMPLE
16562 is a member of this sequence because 16562 = 1^4 + 9^4 + 10^4 = 5^4 + 6^4 + 11^4
PROG
(Python)
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**4 for x in range(1, 50)]
for pos in cwr(power_terms, 3):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v == 2])
for x in range(len(rets)):
print(rets[x])
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved