login
Jordan-Polya numbers (A001013) not in A344181.
3

%I #22 May 22 2021 04:28:43

%S 72,216,432,1296,1728,2592,5184,7776,10368,14400,15552,28800,31104,

%T 41472,46656,51840,57600,62208,93312,115200,120960,124416,155520,

%U 186624,230400,248832,279936,311040,373248,460800,559872,604800,746496,921600,933120,995328,1088640,1119744,1209600,1244160,1492992,1679616,1728000

%N Jordan-Polya numbers (A001013) not in A344181.

%C These are numbers that are products of factorial numbers (A000142), but whose presence in A001013 cannot be determined by a simple greedy algorithm that repeatedly divides the largest factorial divisor [= A055874(n)!] off, until only 1 remains.

%H David A. Corneth, <a href="/A344179/b344179.txt">Table of n, a(n) for n = 1..10000</a>

%H <a href="/index/Fa#factorial">Index entries for sequences related to factorial numbers</a>

%e 72 = 2*6*6 = 2! * 3! * 3! is present in A001013, and as it is not present in A344181 (because when it is divided by its largest factorial divisor 24, we get 72/24 = 3, an odd number that is not a factorial itself), it is therefore present in this sequence.

%t fct = Array[#! &, 10]; prev = {}; jp = fct; While[jp != prev, prev = jp; jp = Select[Union @@ Outer[Times, jp, fct], # <= fct[[-1]] &]]; fctdiv[n_] := Module[{m = 1, k = 1}, While[Divisible[n, m], k++; m *= k]; m /= k; n/m]; Select[jp, FixedPoint[fctdiv, #] != 1 &] (* _Amiram Eldar_, May 22 2021 *)

%o (PARI)

%o search_up_to = 2^22;

%o A076934(n) = for(k=2, oo , if(n%k, return(n), n /= k));

%o A093411(n) = if(!n,n, if(n%2, n, A093411(A076934(n))));

%o A001013list(lim, mx=lim)=if(lim<2, return([1])); my(v=[1], t=1); for(n=2, mx, t*=n; if(t>lim, break); v=concat(v, t*A001013list(lim\t, t))); Set(v) \\ From A001013

%o v001013 = A001013list(search_up_to);

%o A001013(n) = v001013[n];

%o isA344179(n) = if(v001013[#v001013]<n,-(1/0),((1!=A093411(n))&&vecsearch(v001013,n)));

%o for(n=1,search_up_to,if(isA344179(n),print1(n,", ")));

%Y Setwise difference of A001013 and A344181.

%Y Cf. A000142, A055874, A076934, A093411.

%K nonn

%O 1,1

%A _Antti Karttunen_, May 18 2021