%I #30 Aug 01 2023 15:34:20
%S 72,2025,78447,5922181,84238825,1141011175
%N Numbers included in A343983 but not in A074583.
%e If n is in A074583, n can be expressed as n = p^e (p>=e) using the prime p.
%e On the other hand, the terms of this sequence are factorized as follows.
%e 72 = 2^3 * 3^2.
%e 2025 = 3^4 * 5^2.
%e 78447 = 3 * 79 * 331.
%e 5922181 = 71 * 239 * 349.
%e 84238825 = 5^2 * 11 * 17 * 37 * 487.
%o (PARI) isok(n) = my(f=factor(n)); sumdiv(n, d, Mod(d, n)^d)==1 && n>1 && !(#f~==1 && f[1, 1]>=f[1, 2]);
%Y Cf. A074583, A343983.
%K nonn,more
%O 1,1
%A _Seiichi Manyama_, May 07 2021
%E a(6) from _Seiichi Manyama_, Aug 01 2023