login
A343976
Primes that are the sum of two consecutive terms of A093641.
1
3, 5, 7, 11, 13, 23, 47, 71, 109, 131, 139, 181, 193, 229, 251, 281, 349, 379, 383, 401, 419, 461, 499, 659, 701, 709, 761, 821, 859, 911, 919, 1021, 1091, 1129, 1231, 1259, 1399, 1451, 1489, 1549, 1709, 1721, 1759, 1811, 1861, 1871, 1931, 2029, 2081, 2113, 2141, 2179, 2221, 2293, 2339, 2399
OFFSET
1,1
COMMENTS
Any term of A093641 that is the sum of two consecutive terms of A093641 is prime.
LINKS
EXAMPLE
a(10) = 131 is a term because 131 = 64+67 = A093641(43)+ A093641(44) and is prime.
MAPLE
N:= 10^4: # for terms <= N
R:= seq(2^i, i=0..ilog2(N/2)):
p:= 3:
while p <= N/2 do
R:= R, seq(p*2^i, i=0..floor(log[2](N/2/p)));
p:= nextprime(p);
od:
R:= sort([R]):
select(isprime, R);
CROSSREFS
Cf. A093641.
Sequence in context: A088878 A259730 A254673 * A155916 A038979 A179739
KEYWORD
nonn
AUTHOR
J. M. Bergot and Robert Israel, May 06 2021
STATUS
approved