login
a(n) is the least prime == 4 (mod prime(n)).
1

%I #27 May 31 2021 19:27:09

%S 2,7,19,11,37,17,89,23,73,149,97,41,127,47,239,163,181,431,71,359,223,

%T 83,419,271,101,307,107,967,113,569,131,397,1237,421,2239,457,1103,

%U 167,839,523,541,547,577,197,1777,601,1481,227,3863,233,3499,2633,727,757,1289,1319,811,1901,281,1409

%N a(n) is the least prime == 4 (mod prime(n)).

%H Alois P. Heinz, <a href="/A343908/b343908.txt">Table of n, a(n) for n = 1..10000</a>

%e a(3) = 19 because 19 is the least prime == 4 (mod prime(3)).

%e a(4) = 11 because 11 is the least prime == 4 (mod prime(4)).

%p a:= proc(n) local q, p; p:= ithprime(n); q:= p;

%p do if irem(q-4, p)=0 then break fi;

%p q:= nextprime(q);

%p od; q

%p end:

%p seq(a(n), n=1..60); # _Alois P. Heinz_, May 03 2021

%t s = {}; p = 5; Do[q = p + 2; While[Mod[q, p] != 4, q = NextPrime[q]]; AppendTo[s, q]; p = NextPrime[p], {100}]; s

%o (PARI) a(n) = my(p=prime(n)); forprime(q=2,, if (Mod(q, p) == 4, return(q))); \\ _Michel Marcus_, May 03 2021

%Y Cf. A000040, A023200 (primes p such that p+4 is also prime), A034694, A035095, A279756.

%K nonn

%O 1,1

%A _Zak Seidov_, May 03 2021