login
A343854
Irregular triangle read by rows: the n-th row gives the column indices of the matrix of 1..n^2 filled successively back and forth along antidiagonals.
2
1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 3, 3, 2, 3, 1, 2, 1, 1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 4, 3, 4, 1, 2, 1, 1, 2, 3, 4, 3, 2, 1, 1, 2, 3, 4, 5, 5, 4, 3, 2, 3, 4, 5, 5, 4, 5, 1, 2, 1, 1, 2, 3, 4, 3, 2, 1, 1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1, 2, 3, 4, 5, 6, 6, 5, 4, 3, 4, 5, 6, 6, 5, 6
OFFSET
1,3
EXAMPLE
The triangle begins:
1
1 2 1 2
1 2 1 1 2 3 3 2 3
1 2 1 1 2 3 4 3 2 1 2 3 4 4 3 4
...
MATHEMATICA
a={}; For[n=1, n<=6, n++, For[d=1, d<=n, d++, If[EvenQ[d], i=d; For [k=1, k<=d, k++, AppendTo[a, i-k+1]], i=1; For[k=1, k<=d, k++, AppendTo[a, i+k-1]]]]; For[d=n+1, d<=2n-1, d++, If[EvenQ[d], i= n; For[k=1, k<=2n-d, k++, AppendTo[a, i-k+1]], If[OddQ[d], i=d-n+1; For[k=1, k<=2n-d, k++, AppendTo[a, i+k-1]]]]]]; a
CROSSREFS
Cf. A000290 (row length), A002411 (row sums), A060747 (number of antidiagonals), A078475, A319572, A343853 (row indices).
Sequence in context: A104248 A358359 A249973 * A069349 A167404 A280223
KEYWORD
nonn,look,tabf
AUTHOR
Stefano Spezia, May 01 2021
STATUS
approved