login
A343671
Number of partitions of an n-set without blocks of size 10.
1
1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115974, 678559, 4213465, 27643007, 190884307, 1382802389, 10478516523, 82847813908, 681895648039, 5830788687491, 51702731250650, 474630475600569, 4503991075480297, 44120379612630694, 445584481578266277, 4634070027874688433
OFFSET
0,3
FORMULA
E.g.f.: exp(exp(x) - 1 - x^10/10!).
a(n) = n! * Sum_{k=0..floor(n/10)} (-1)^k * Bell(n-10*k) / ((n-10*k)! * k! * (10!)^k).
MAPLE
a:= proc(n) option remember; `if`(n=0, 1, add(`if`(
j=10, 0, a(n-j)*binomial(n-1, j-1)), j=1..n))
end:
seq(a(n), n=0..25); # Alois P. Heinz, Jul 25 2023
MATHEMATICA
nmax = 25; CoefficientList[Series[Exp[Exp[x] - 1 - x^10/10!], {x, 0, nmax}], x] Range[0, nmax]!
Table[n! Sum[(-1)^k BellB[n - 10 k]/((n - 10 k)! k! (10!)^k), {k, 0, Floor[n/10]}], {n, 0, 25}]
a[n_] := a[n] = If[n == 0, 1, Sum[If[k == 10, 0, Binomial[n - 1, k - 1] a[n - k]], {k, 1, n}]]; Table[a[n], {n, 0, 25}]
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Apr 25 2021
STATUS
approved