login
A343517
a(n) = Sum_{1 <= x_1 <= x_2 <= ... <= x_n <= n} gcd(x_1, x_2, ... , x_n, n).
6
1, 4, 12, 42, 130, 506, 1722, 6622, 24426, 93427, 352726, 1359388, 5200312, 20097156, 77567064, 300787366, 1166803126, 4539197723, 17672631918, 68933307843, 269129530770, 1052113994340, 4116715363822, 16124224571368, 63205303313900, 247961973949536
OFFSET
1,2
LINKS
FORMULA
a(n) = Sum_{d|n} phi(n/d) * binomial(d+n-1, n).
a(n) = [x^n] Sum_{k >= 1} phi(k) * x^k/(1 - x^k)^(n+1).
a(n) ~ 2^(2*n - 1) / sqrt(Pi*n). - Vaclav Kotesovec, May 23 2021
MATHEMATICA
a[n_] := DivisorSum[n, EulerPhi[n/#] * Binomial[n + # - 1, n] &]; Array[a, 25] (* Amiram Eldar, Apr 18 2021 *)
PROG
(PARI) a(n) = sumdiv(n, d, eulerphi(n/d)*binomial(d+n-1, n));
CROSSREFS
Main diagonal of A343516.
Sequence in context: A237501 A375547 A300124 * A308371 A052303 A017942
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Apr 17 2021
STATUS
approved