OFFSET
1,4
COMMENTS
Conjecture I: There are infinitely many n such that a(n) >= 1.
Conjecture II: Natural density of numbers n such that a(n) >= 1 is 1.
Conjecture III: Numbers n such that a(n) = 0 is a finite sequence.
Conjecture IV: a(n) >= 1 for all n.
See Links section for some solutions.
LINKS
Altug Alkan, A note on sequence
EXAMPLE
a(4) = 2 because 4! = 0 + 4 + 20 = 4 + 10 + 10.
a(24) = 2 because 24! = f(11393630) + f(118661018) + f(127041924) = f(81298034) + f(61098204) + f(143537134) where f = A000292.
MATHEMATICA
Table[Length[Solve[{i*(i + 1)*(i + 2) + j*(j + 1)*(j + 2) + k*(k + 1)*(k + 2) == 6*n!, i >= 0, j >= 0, k >= 0, i <= j, j <= k, k < (6*n!)^(1/3)}, Integers]], {n, 1, 10}] (* Vaclav Kotesovec, Apr 19 2021 *)
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Altug Alkan, Apr 17 2021
STATUS
approved