%I #10 Apr 13 2021 04:45:33
%S 1,1,8,72,604,5148,43544,368408,3112262,26273542,221605240,1867736120,
%T 15730022540,132385106956,1113413229000,9358220560136,78606905495809,
%U 659886123312449,5536404584185376,46424396382193376,389074608184431328,3259085506224931424,27286163457927575200
%N Expansion of Product_{k>=1} (1 + x^k)^(8^(k-1)).
%F a(n) ~ exp(sqrt(n/2) - 1/16 - c/8) * 2^(3*n - 7/4) / (sqrt(Pi)*n^(3/4)), where c = Sum_{j>=2} (-1)^j / (j * (8^(j-1) - 1)). - _Vaclav Kotesovec_, Apr 13 2021
%p h:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
%p add(h(n-i*j, i-1)*binomial(8^(i-1), j), j=0..n/i)))
%p end:
%p a:= n-> h(n$2):
%p seq(a(n), n=0..22); # _Alois P. Heinz_, Apr 12 2021
%t nmax = 22; CoefficientList[Series[Product[(1 + x^k)^(8^(k - 1)), {k, 1, nmax}], {x, 0, nmax}], x]
%t a[n_] := a[n] = If[n == 0, 1, (1/n) Sum[Sum[(-1)^(k/d + 1) d 8^(d - 1), {d, Divisors[k]}] a[n - k], {k, 1, n}]]; Table[a[n], {n, 0, 22}]
%o (PARI) seq(n)={Vec(prod(k=1, n, (1 + x^k + O(x*x^n))^(8^(k-1))))} \\ _Andrew Howroyd_, Apr 12 2021
%Y Cf. A098407, A292842, A343353, A343360, A343361, A343362, A343363, A343364, A343366.
%K nonn
%O 0,3
%A _Ilya Gutkovskiy_, Apr 12 2021