login
A343328
a(0) = 0. a(n) = the second smallest number greater than a(n-1) that cannot be written as a sum of any previous distinct terms.
0
0, 2, 4, 7, 10, 18, 33, 38, 86, 162, 284, 522, 928, 1688, 3022, 5470, 9826, 17744, 31926, 57588, 103696, 186946, 336750, 606946, 1093500, 1970642, 3550696, 6398480, 11529230, 20775494, 37435474, 67457232, 121552686, 219031676, 394679816, 711190482, 1281518438
OFFSET
0,2
FORMULA
a(n+3) = a(n+2)+2a(n+1)-a(n) for n=5, n>=8.
EXAMPLE
For n=4, a(4) = 10, because the numbers which cannot be expressed as a sum of any of 0,2,4,7 are 1,3,5,8,10,12,14,15,...
PROG
(Python)
MAX=10000
dp=[False]*(MAX+2)
an=0
dp[an]=True
while an<MAX:
print(an)
while dp[an]:
an+=1
an+=1
while dp[an]:
an+=1
for i in reversed(range(an, MAX)):
dp[i]|=dp[i-an]
CROSSREFS
Sequence in context: A332639 A281168 A274352 * A088762 A217385 A138827
KEYWORD
easy,nonn
AUTHOR
Akihiko Yoshida, Apr 11 2021
STATUS
approved