Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #21 May 24 2021 18:14:16
%S 0,8,81,520,15625,233369,5764801,33554952,1162261548,70000015633,
%T 3138428376721,44580502475161,3937376385699289,100008061435786953,
%U 3503151123046890706,36893488147452658184,14063084452067724991009,196732040376483850371956,37589973457545958193355601
%N a(n) = Sum_{d|n} d^d * sopf(d).
%C If p is prime, a(p) = Sum_{d|p} d^d * sopf(d) = 1^1*0 + p^p*p = p^(p+1).
%e a(4) = Sum_{d|4} d^d * sopf(d) = 1^1*sopf(1) + 2^2*sopf(2) + 4^4*sopf(4) = 0 + 8 + 512 = 520.
%t Table[Sum[i^i*Sum[k (PrimePi[k] - PrimePi[k - 1]) (1 - Ceiling[i/k] + Floor[i/k]), {k, i}] (1 - Ceiling[n/i] + Floor[n/i]) , {i, n}], {n, 20}]
%Y Cf. A008472 (sopf).
%K nonn
%O 1,2
%A _Wesley Ivan Hurt_, May 24 2021