Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #9 Apr 11 2021 07:53:17
%S 45,121,1815,24000,297025,78250050,361,3509,30976,27216,403202,75,
%T 1805,1728,31500,508805,207368,1609152,227402340,29821320745,
%U 8223103375490,37158912,15482880000,5996600870820,1702422879696000,1176,324900,29859840,30950832,2518646460
%N Number of spanning trees of the graph of the n-th Johnson solid.
%C Terms are taken from the paper by Horiyama and Shoji, verified by _Pontus von Brömssen_.
%H Pontus von Brömssen, <a href="/A343209/b343209.txt">Table of n, a(n) for n = 1..92</a>
%H Takashi Horiyama and Wataru Shoji, <a href="https://www.ibr.cs.tu-bs.de/alg/eurocg13/booklet_eurocg13.pdf">The number of different unfoldings of polyhedra</a>, The 29th European Workshop on Computational Geometry, Technische Universität Braunschweig 2013, 143-146. [Apparently, two pairs of Johnson solids have switched numbers in Table 2, namely J32 <-> J33 and J40 <-> J41.]
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/List_of_Johnson_solids">List of Johnson solids</a>
%e The gyrobifastigium (J26) has a(26) = 1176 spanning trees.
%Y Cf. A242731, A343210, A343213.
%K nonn,fini,full
%O 1,1
%A _Pontus von Brömssen_, Apr 08 2021