login
A343209
Number of spanning trees of the graph of the n-th Johnson solid.
4
45, 121, 1815, 24000, 297025, 78250050, 361, 3509, 30976, 27216, 403202, 75, 1805, 1728, 31500, 508805, 207368, 1609152, 227402340, 29821320745, 8223103375490, 37158912, 15482880000, 5996600870820, 1702422879696000, 1176, 324900, 29859840, 30950832, 2518646460
OFFSET
1,1
COMMENTS
Terms are taken from the paper by Horiyama and Shoji, verified by Pontus von Brömssen.
LINKS
Pontus von Brömssen, Table of n, a(n) for n = 1..92
Takashi Horiyama and Wataru Shoji, The number of different unfoldings of polyhedra, The 29th European Workshop on Computational Geometry, Technische Universität Braunschweig 2013, 143-146. [Apparently, two pairs of Johnson solids have switched numbers in Table 2, namely J32 <-> J33 and J40 <-> J41.]
EXAMPLE
The gyrobifastigium (J26) has a(26) = 1176 spanning trees.
CROSSREFS
KEYWORD
nonn,fini,full
AUTHOR
STATUS
approved