login
a(0)=3; for n > 0, a(n) = 2^(2*n) + 3*2^(n-1) + 1.
2

%I #21 Apr 27 2021 02:15:06

%S 3,8,23,77,281,1073,4193,16577,65921,262913,1050113,4197377,16783361,

%T 67121153,268460033,1073790977,4295065601,17180065793,68719869953,

%U 274878693377,1099513200641,4398049656833,17592192335873,70368756760577,281475001876481,1125899957174273,4503599728033793

%N a(0)=3; for n > 0, a(n) = 2^(2*n) + 3*2^(n-1) + 1.

%C A bisection of A257418. Apart from first term, same as A036562.

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (7,-14,8).

%F From _Chai Wah Wu_, Apr 26 2021: (Start)

%F a(n) = 7*a(n-1) - 14*a(n-2) + 8*a(n-3) for n > 3.

%F G.f.: -(4*x - 3)*(x^2 + 3*x - 1)/((x - 1)*(2*x - 1)*(4*x - 1)). (End)

%Y Cf. A257418, A036562, A343175.

%K nonn,easy

%O 0,1

%A _N. J. A. Sloane_, Apr 26 2021

%E a(17)-a(26) from _Martin Ehrenstein_, Apr 26 2021