login
A343123
Primes p such that the sum of A001414(k) for k strictly between p and the following prime is a proper prime power (a term of A246547).
1
3, 13, 17, 19, 239, 269, 457, 751, 1091, 1319, 1871, 2129, 2141, 2341, 2549, 2683, 2969, 3167, 3359, 3671, 3821, 4091, 4799, 5437, 5843, 6299, 6551, 6779, 7559, 8387, 8999, 9239, 9419, 10529, 11057, 11717, 11777, 12071, 13309, 13901, 17027, 17203, 18047, 18311, 18521, 21139, 23831, 26249, 26861
OFFSET
1,1
COMMENTS
Primes prime(k) such that Sum_{prime(k) < j < prime(k+1)} A001414(j) is in A246547.
LINKS
EXAMPLE
a(4) = 19 is a term because 19 and 23 are consecutive primes with Sum_{19 < j < 23} A001414(j) = 9+10+13 = 32 = 2^5.
MAPLE
spf:= proc(n) local t; add(t[1]*t[2], t=ifactors(n)[2]) end proc:
R:= NULL: count:= 0: p:= 2:
while count < 100 do
q:= p; p:= nextprime(p);
L:= ifactors(add(spf(i), i=q+1..p-1))[2];
if nops(L) = 1 and L[1][2]>1 then
count:= count+1; R:= R, q;
fi
od:
R;
CROSSREFS
Sequence in context: A119889 A038956 A309291 * A040123 A296936 A038883
KEYWORD
nonn
AUTHOR
J. M. Bergot and Robert Israel, Apr 05 2021
STATUS
approved