login
A343099
Sums of 3 distinct odd squares.
1
35, 59, 75, 83, 91, 107, 115, 131, 139, 147, 155, 171, 179, 195, 203, 211, 219, 227, 235, 243, 251, 259, 275, 283, 291, 299, 307, 315, 323, 331, 339, 347, 355, 363, 371, 379, 387, 395, 403, 411, 419, 427, 435, 443, 451, 459, 467, 475, 483, 491, 499, 507, 515, 523, 531
OFFSET
1,1
COMMENTS
From Robert Israel, Apr 06 2021: (Start)
All terms == 3 (mod 8).
Conjecture: contains all numbers == 3 (mod 8) except 3, 11, 19, 27, 43, 51, 67, 99, 123, 163, 187, 267, 627. (End)
EXAMPLE
107 is in the sequence since 107 = 1^2 + 5^2 + 9^2.
MAPLE
N:= 10^4: # for terms <= N
S:= {seq(seq(seq(x^2+y^2+z^2, z = 1 .. min(y-2, floor(sqrt(N-x^2-y^2))), 2), y = 1 .. min(x-2, floor(sqrt(N-x^2))), 2), x = 1 .. floor(sqrt(N)), 2)}:
sort(convert(S, list)); # Robert Israel, Apr 05 2021
CROSSREFS
Subsequence of A017101.
Cf. A004432, A016754 (odd squares).
Sequence in context: A095958 A244057 A219457 * A026064 A338244 A250764
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Apr 05 2021
STATUS
approved