login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Constant term in the expansion of ( (Sum_{j=0..n} x^(2*j+1)+1/x^(2*j+1)) * (Sum_{j=0..n} y^(2*j+1)+1/y^(2*j+1)) - (Sum_{j=0..n-1} x^(2*j+1)+1/x^(2*j+1)) * (Sum_{j=0..n-1} y^(2*j+1)+1/y^(2*j+1)) )^(2*n).
1

%I #16 Apr 01 2021 14:41:22

%S 1,12,2100,1751680,4190017860,20874801722544,177661172742061008,

%T 2295966445175463883680,41848194615009705993547620,

%U 1022849138778659709119846990032,32304962696573489860535097887683296

%N Constant term in the expansion of ( (Sum_{j=0..n} x^(2*j+1)+1/x^(2*j+1)) * (Sum_{j=0..n} y^(2*j+1)+1/y^(2*j+1)) - (Sum_{j=0..n-1} x^(2*j+1)+1/x^(2*j+1)) * (Sum_{j=0..n-1} y^(2*j+1)+1/y^(2*j+1)) )^(2*n).

%C Number of (2*n)-step closed paths (from origin to origin) in 2-dimensional lattice, using steps (t_1,t_2) (|t_1| + |t_2| = 2*n+1).

%C Constant term in the expansion of (Sum_{j=0..2*n+1} (x^j + 1/x^j)*(y^(2*n+1-j) + 1/y^(2*n+1-j)) - x^(2*n+1) - 1/x^(2*n+1) - y^(2*n+1) - 1/y^(2*n+1))^(2*n).

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Taxicab_geometry">Taxicab geometry</a>.

%o (PARI) f(n) = (x^(2*n+2)-1/x^(2*n+2))/(x-1/x);

%o a(n) = sum(j=0, 2*n, (-1)^j*binomial(2*n, j)*polcoef(f(n)^j*f(n-1)^(2*n-j), 0)^2);

%Y Main diagonal of A329066.

%Y Cf. A002894, A328716, A329024, A329067, A329076.

%K nonn

%O 0,2

%A _Seiichi Manyama_, Mar 31 2021