login
Number of n-step self-avoiding walks on 8-D cubic lattice.
6

%I #7 Mar 31 2021 13:27:25

%S 1,16,240,3600,53776,803504,11994096,179054640,2672126256,39878886896,

%T 595065468048,8879592484240,132491660323472,1976912303612080,

%U 29496313445323888,440098575225868624,6566302628140689744,97969968518462054352,1461698348385616122224

%N Number of n-step self-avoiding walks on 8-D cubic lattice.

%H N. Clisby, R. Liang, and G. Slade, <a href="http://dx.doi.org/10.1088/1751-8113/40/36/003">Self-avoiding walk enumeration via the lace expansion</a>, J. Phys. A: Math. Theor. vol. 40 (2007) pp. 10973-11017. Gives terms through a(24).

%H Nathan Clisby, Richard Liang, and Gordon Slade, <a href="http://www.math.ubc.ca/~slade/se_tables.pdf">Self-avoiding walk enumeration via the lace expansion: tables</a> [Tables in humanly readable form]; <a href="/A342883/a342883.pdf">Local copy</a>.

%H N. Clisby, R. Liang, and G. Slade, <a href="http://www.math.ubc.ca/~slade/lacecounts/">Self-avoiding walk enumeration via the lace expansion</a>. [Tables in machine-readable format on separate pages.]

%Y For self-avoiding walks on the k-D cubic lattice for k = 2, ..., 12 see A001411, A001412, A010575, A010576, A010577, A342883, A342884, A342885, A342886, A342887, A342888.

%K nonn

%O 0,2

%A _N. J. A. Sloane_, Mar 31 2021