%I #27 Mar 31 2021 20:26:17
%S 0,0,1,1,1,2,2,2,2,3,3,0,3,3,4,4,4,4,4,4,5,5,5,0,5,5,5,6,6,3,1,1,3,6,
%T 6,7,7,7,6,0,6,7,7,7,8,8,8,8,2,2,8,8,8,8,9,9,6,5,9,0,9,5,6,9,9,10,10,
%U 10,9,10,1,1,10,9,10,10,10,11,11,11,7,11,9,0,9,11,7,11,11,11
%N Array read by antidiagonals: Sprague Grundy values for two-dimensional Misère Nim game Gamma(P_{Mis}, C_[1]).
%H Rémy Sigrist, <a href="/A342881/b342881.txt">Table of n, a(n) for n = 0..10009</a>
%H Yuki Irie, <a href="https://doi.org/10.37236/8916">The Sprague-Grundy Functions of Saturations of Misère Nim</a>, Electronic J. Combinatorics, 28(1) (2021), #P1.58.
%H Rémy Sigrist, <a href="/A342881/a342881.png">Colored representation of the array for n, k < 1000</a> (where the color is function of T(n, k), white pixels correspond to zeros)
%H Rémy Sigrist, <a href="/A342881/a342881.gp.txt">PARI program for A342881</a>
%e The first few antidiagonals are:
%e 0, 0,
%e 1, 1, 1,
%e 2, 2, 2, 2,
%e 3, 3, 0, 3, 3,
%e 4, 4, 4, 4, 4, 4,
%e 5, 5, 5, 0, 5, 5, 5,
%e 6, 6, 3, 1, 1, 3, 6, 6,
%e 7, 7, 7, 6, 0, 6, 7, 7, 7,
%e 8, 8, 8, 8, 2, 2, 8, 8, 8, 8,
%e ...
%e The first few rows of the array are
%e . -, 0, 1, 2, 3, 4, 5, 6, 7, ...
%e . 0, 1, 2, 3, 4, 5, 6, 7, 8, ...
%e . 1, 2, 0, 4, 5, 3, 7, 8, 6, ...
%e . 2, 3, 4, 0, 1, 6, 8, 5, 9, ...
%e . 3, 4, 5, 1, 0, 2, 9, 10, 11, ...
%e . 4, 5, 3, 6, 2, 0, 1, 9, 10, ...
%e . 5, 6, 7, 8, 9, 1, 0, 2, 3, ...
%e . 6, 7, 8, 5, 10, 9, 2, 0, 1, ...
%e . 7, 8, 6, 9, 11, 10, 3, 1, 0, ...
%e . ...
%e Note that the top left entry in the array is missing.
%o (PARI) See Links section.
%Y Cf. A342882.
%K nonn,look,tabf
%O 0,6
%A _N. J. A. Sloane_, Mar 30 2021
%E More terms from _Rémy Sigrist_, Mar 31 2021