OFFSET
1,2
COMMENTS
Equivalently, self numbers in base -4, since A066323(k) is also the sum of the digits of k in base -4.
Analogous to self numbers (A003052) using base i-1 representation (A271472) instead of decimal expansion.
The number of terms not exceeding 10^k, for k=1,2,..., is 5, 20, 155, 1507, 15008, 150007, 1500014, 15000011. Is the asymptotic density of this sequence exactly 3/20?
REFERENCES
József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, Chapter 4, p. 384-386.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000
Walter Penney, A "binary" system for complex numbers, Journal of the ACM, Vol. 12, No. 2 (1965), pp. 247-248.
Eric Weisstein's World of Mathematics, Self Number.
Wikipedia, Self number.
MATHEMATICA
s[n_] := Module[{v = {{0, 0, 0, 0}, {0, 0, 0, 1}, {1, 1, 0, 0}, {1, 1, 0, 1}}}, Plus @@ Flatten @ v[[1 + Reverse @ Most[Mod[NestWhileList[(# - Mod[#, 4])/-4 &, n, # != 0 &], 4]]]]]; f[n_] := n + s[n]; m = 1000; Complement[Range[m], Select[Union@Array[f, m], # <= m &]]
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Amiram Eldar, Mar 19 2021
STATUS
approved