login
A342670
a(n) = gcd(n*sigma(A064989(n)), sigma(n)*A064989(n)), where A064989 is multiplicative with a(2^e) = 1 and a(p^e) = prevprime(p)^e for odd primes p, and sigma gives the sum of the divisors of its argument.
4
1, 1, 1, 1, 2, 6, 2, 1, 1, 2, 4, 4, 2, 12, 36, 1, 2, 6, 2, 2, 2, 4, 4, 24, 1, 6, 5, 56, 6, 72, 2, 1, 24, 2, 120, 28, 2, 12, 4, 10, 2, 12, 2, 4, 36, 8, 4, 8, 1, 1, 18, 2, 6, 30, 8, 24, 2, 6, 6, 144, 2, 12, 2, 1, 12, 144, 2, 14, 12, 240, 4, 12, 2, 2, 9, 4, 336, 24, 2, 2, 1, 2, 4, 56, 4, 12, 24, 4, 6, 72, 56, 8, 2, 8, 360
OFFSET
1,5
FORMULA
a(n) = gcd(A342661(n), A342662(n)).
a(n) = gcd(n*A000203(A064989(n)), A000203(n)*A064989(n)).
PROG
(PARI)
A064989(n) = { my(f); f = factor(n); if((n>1 && f[1, 1]==2), f[1, 2] = 0); for (i=1, #f~, f[i, 1] = precprime(f[i, 1]-1)); factorback(f) };
A326041(n) = sigma(A064989(n));
A342661(n) = (n*A326041(n));
A342662(n) = (sigma(n)*A064989(n));
A342670(n) = gcd(A342661(n), A342662(n));
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Mar 24 2021
STATUS
approved