login
A342645
Triangle read by rows: T(n,k) gives n! times the coefficient of x^k in the polynomial that describes the number of permutations on x letters with major index n.
1
1, -1, 1, -2, -1, 1, 0, -7, 0, 1, 0, -14, -13, 2, 1, 120, -46, -65, -15, 5, 1, 0, 516, -356, -165, -5, 9, 1, 5040, 1392, 266, -1421, -280, 28, 14, 1, 0, 46320, 3772, -5740, -3871, -280, 98, 20, 1, 0, 215280, 212724, -26272, -31437, -7791, 126, 222, 27, 1
OFFSET
0,4
COMMENTS
This n-th row describes a polynomial that eventually agrees with the n-th column of A008302.
Conjecture: For each m, T(n,n-m) is a polynomial of degree 2m whose leading coefficient is abs(A290030(m)/A053657(m+1)).
FORMULA
Conjectures:
T(n,n) = 1.
T(n,n-1) = (-3n + n^2)/2.
T(n,n-2) = (-2n + 21n^2 - 22n^3 + 3n^4)/24.
T(n,n-3) = (96n - 134n^2 + 13n^3 + 37n^4 - 13n^5 + n^6)/48.
EXAMPLE
n\k | 0 1 2 3 4 5 6 7 8 9
----+--------------------------------------------------------------
0 | 1;
1 | -1, 1;
2 | -2, -1, 1;
3 | 0, -7, 0, 1;
4 | 0, -14, -13, 2, 1;
5 | 120, -46, -65, -15, 5, 1;
6 | 0, 516, -356, -165, -5, 9, 1;
7 | 5040, 1392, 266, -1421, -280, 28, 14, 1;
8 | 0, 46320, 3772, -5740, -3871, -280, 98, 20, 1;
9 | 0, 215280, 212724, -26272, -31437, -7791, 126, 222, 27, 1;
For n = 4, the polynomial that describes the 4th column of A008302 is
A008302(x,4) = (-14x -13x^2 +2x^3 + x^4)/4! = Sum_{j=0..4} (T(j,4)*x^j)/4!.
MATHEMATICA
A008302T[0, 0] := 1; A008302T[-1, k_] := 0;
A008302T[n_, k_] := (A008302T[n, k] = If[0 <= k <= n*(n - 1)/2, A008302T[n, k - 1] + A008302T[n - 1, k] - A008302T[n - 1, k - n], 0]);
A342645Row[n_] := (A342645Row[n] = Expand[n!*InterpolatingPolynomial[Table[{m, A008302T[m, n]}, {m, n, 2*n + 2}], x]]);
A342645T[n_, k_] := Coefficient[A342645Row[n], x, k];
CROSSREFS
KEYWORD
sign,tabl
AUTHOR
Peter Kagey, Mar 17 2021
STATUS
approved