login
A342502
Gaps between first elements of prime quintuples of the form (p, p+2, p+6, p+12, p+14). The quintuples are abutting: twin/cousin/sexy/twin pairs.
0
12, 210, 1050, 330, 1920, 390, 720, 150, 22950, 10710, 780, 5040, 27060, 26040, 2340, 13440, 8880, 360, 1950, 41370, 17790, 3630, 4320, 6510, 870, 76620, 15210, 21540, 5760, 29100, 2340, 66990, 1950, 3360, 5370, 16800, 6930, 40530, 4230, 3570, 15510, 10320
OFFSET
1,1
LINKS
T. Forbes, Prime k-tuplets
Eric Weisstein's World of Mathematics, Prime Triplet.
FORMULA
a(n) = A078946(n) - A078946(n-1) for n >= 2.
a(n) == 0 (mod 30) for n>1.
EXAMPLE
The first 4 terms of the sequence are 12, 210, 1050, 330, since the gaps between first elements of the first five quintuples {5,7,11,17,19}, {17,19,23,29,31}, {227,229,233,239,241}, {1277,1279,1283,1289,1291}, {1607,1609,1613,1619,1621} are, 17-5=12, 227-17=210, etc.
MAPLE
b:= proc(n) option remember; local p; p:= `if`(n=1, 1, b(n-1));
do p:= nextprime(p);
if andmap(isprime, [p+2, p+6, p+12, p+14]) then return p fi
od
end:
a:= n-> b(n+1)-b(n):
seq(a(n), n=1..65); # Alois P. Heinz, Mar 14 2021
MATHEMATICA
b[n_] := b[n] = Module[{p}, p = If[n == 1, 1, b[n-1]]; While[True, p = NextPrime[p]; If[AllTrue[{p+2, p+6, p+12, p+14}, PrimeQ], Return[p]]]];
a[n_] := b[n+1]-b[n];
Table[a[n], {n, 1, 65}] (* Jean-François Alcover, May 14 2022, after Alois P. Heinz *)
CROSSREFS
Cf. A078946.
Sequence in context: A307691 A129466 A259516 * A334886 A027399 A266910
KEYWORD
nonn
AUTHOR
James S. DeArmon, Mar 14 2021
STATUS
approved