login
A342460
a(n) = 1 if n > 1 and is divisible by the sum of its prime factors (with repetition), otherwise 0.
1
0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1
OFFSET
1
COMMENTS
Characteristic function of A036844. a(n) - A010051(n) gives the characteristic function for A046346.
FORMULA
a(1) = 0; and for n > 1, a(n) = [0=A238525(n)], where [ ] is the Iverson bracket.
MATHEMATICA
Array[Boole[Mod[#, Total@ Flatten[ConstantArray[#1, #2] & @@@ FactorInteger[#]]] == 0] - Boole[# == 1] &, 105] (* Michael De Vlieger, Mar 19 2021 *)
PROG
(PARI) A342460(n) = if(n<2, 0, my(f=factor(n)); !(n%((f[, 1]~*f[, 2])))); \\ After code in A001414 and A036844.
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Mar 18 2021
STATUS
approved