login
A342387
Integers x such that there exists y, x>y>=1, satisfying (y+1)/(x+1) = (x||(y+1))/(y||(x+1)) where z||t is the concatenation of z and t.
2
20, 175, 1500, 29600, 253075, 1124039, 2163720, 1620864179, 3120083460, 13857908224, 118481007099, 2337285022799, 19983094049524, 170849530073079, 28815607761506104, 127985053235771120, 246364903884373539, 1094234263598927875, 184554358010701244300, 1577885049278315692375
OFFSET
1,1
LINKS
Josep M. Brunat and Joan-Carles Lario, A problem on concatenated integers, arXiv:2103.05306 [math.NT], 2021.
EXAMPLE
x=20 is a term with y=6 because 7/21 = 207/621.
PROG
(PARI) isok(x) = {for (y=1, x-1, if ((y+1)/(x+1) == eval(Str(x, y+1))/eval(Str(y, x+1)), return (y)); ); }
for (x=1, 10000, if (isok(x), print1(x, ", ")));
(Python)
A342387_list, x, s1, s2, m = [], 1, '1', '2', 10
while x < 10**6:
for y in range(1, x):
if (x+1)*int(s1+str(y+1)) == (y+1)*(y*m+x+1):
A342387_list.append(x)
break
x += 1
s1, s2 = s2, str(x+1)
m = 10**(len(s2)) # Chai Wah Wu, Mar 10 2021
(Python)
# based on formula in Brunat and Lario 2021
xlist, ylist, A342387_list, x, y = [4, 20, 39], [1, 6, 12], [20], 39, 12
while len(A342387_list) < 100:
if len(str(x+1)) == len(str(y+1))+1:
A342387_list.append(x)
x, y = 19*xlist[-3]+60*ylist[-3]+39, 6*xlist[-3]+19*ylist[-3]+12
xlist, ylist = xlist[1:] + [x], ylist[1:] + [y] # Chai Wah Wu, Mar 10 2021
CROSSREFS
Cf. A342388.
Sequence in context: A027791 A047819 A163689 * A140044 A027332 A159538
KEYWORD
nonn,base
AUTHOR
Michel Marcus, Mar 10 2021
EXTENSIONS
More terms from Chai Wah Wu, Mar 10 2021
STATUS
approved