login
A342362
Expansion of the o.g.f. (1 + 8*x + 10*x^2 + 8*x^3 + x^4)/((1 - x)^4*(1 + x)^2).
2
1, 10, 31, 76, 145, 254, 399, 600, 849, 1170, 1551, 2020, 2561, 3206, 3935, 4784, 5729, 6810, 7999, 9340, 10801, 12430, 14191, 16136, 18225, 20514, 22959, 25620, 28449, 31510, 34751, 38240, 41921, 45866, 50015, 54444, 59089, 64030, 69199, 74680, 80401, 86450, 92751, 99396, 106305, 113574
OFFSET
0,2
COMMENTS
Antidiagonal sums of square array A342354.
FORMULA
a(n) = (n + 1)/4*(5 - (-1)^n) - 7*binomial(n + 2, 2) + 7*binomial(n + 3, 3).
a(n) = (n + 1)*(14*(n + 1)^2 - 3*(-1)^n + 1)/12. - Bruno Berselli, Mar 09 2021
PROG
(Julia) [div((n + 1)*(14*(n + 1)^2 - 3*(-1)^n + 1), 12) for n in 0:50] |> println # Bruno Berselli, Mar 09 2021
CROSSREFS
Cf. A342354.
Sequence in context: A163655 A041190 A111500 * A161325 A187705 A267564
KEYWORD
nonn,easy
AUTHOR
Petros Hadjicostas, Mar 09 2021
STATUS
approved