login
A342349
a(n) = p^3 where p is prime and digits of p counted with multiplicity appear in a(n).
0
125, 1331, 24389, 205379, 226981, 300763, 357911, 389017, 912673, 1030301, 1295029, 2571353, 12649337, 15813251, 22188041, 38272753, 41781923, 58863869, 64481201, 101847563, 124251499, 158340421, 237176659, 263374721, 318611987, 344472101, 371694959, 393832837
OFFSET
1,1
COMMENTS
Subsequence of A030082. Coincides with A030082(n) for 1 <= n <= 12.
EXAMPLE
a(13) = 12649337 = 233^3. 233 is prime and 12649337 contains one digit '2' and two digits '3'.
PROG
(Python)
from multiset import Multiset
from sympy import prime
A342349_list = []
for i in range(1, 10**6):
p = prime(i)
q = p**3
if Multiset(str(p)) <= Multiset(str(q)):
A342349_list.append(q)
CROSSREFS
Cf. A030082.
Sequence in context: A000526 A016971 A030082 * A017043 A255181 A102061
KEYWORD
nonn,base
AUTHOR
Chai Wah Wu, Mar 17 2021
STATUS
approved