%I #21 Jun 10 2021 20:35:39
%S 1,1,1,3,4,5,10,18,26,42,72,114,184,305,494,799,1305,2123,3446,5611,
%T 9134,14851,24162,39314,63945,104025,169238,275305,447863,728592,
%U 1185248,1928143,3136706,5102743,8301086,13504175,21968436,35737995,58138282,94578751,153859673
%N Number of compositions of n with all adjacent parts (x, y) satisfying x >= 2y or y >= 2x.
%C Either quotient x/y or y/x must be >= 2.
%H Alois P. Heinz, <a href="/A342333/b342333.txt">Table of n, a(n) for n = 0..2000</a>
%e The a(1) = 1 through a(7) = 18 compositions:
%e (1) (2) (3) (4) (5) (6) (7)
%e (12) (13) (14) (15) (16)
%e (21) (31) (41) (24) (25)
%e (121) (131) (42) (52)
%e (212) (51) (61)
%e (141) (124)
%e (213) (142)
%e (312) (151)
%e (1212) (214)
%e (2121) (241)
%e (313)
%e (412)
%e (421)
%e (1213)
%e (1312)
%e (2131)
%e (3121)
%e (12121)
%p b:= proc(n, i) option remember; `if`(n=0, 1, add(b(n-j, j), j=
%p `if`(i=0, 1..n, {$1..min(n, iquo(i, 2)), $(2*i)..n})))
%p end:
%p a:= n-> b(n, 0):
%p seq(a(n), n=0..42); # _Alois P. Heinz_, May 24 2021
%t Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],And@@Table[#[[i]]>=2*#[[i-1]]||#[[i-1]]>=2*#[[i]],{i,2,Length[#]}]&]],{n,0,15}]
%t (* Second program: *)
%t b[n_, i_] := b[n, i] = If[n == 0, 1, If[i == 0, Sum[b[n-j, j], {j, 1, n}], Sum[b[n-j, j], {j, Range[Min[n, Quotient[i, 2]]]~Union~Range[2i, n]}]]];
%t a[n_] := b[n, 0];
%t a /@ Range[0, 42] (* _Jean-François Alcover_, Jun 10 2021, after_Alois P. Heinz_ *)
%Y The unordered version (partitions) is A000929.
%Y Reversing operators and changing 'or' into 'and' gives A224957 (strict: A342342).
%Y The version not allowing equality (i.e., strict relations) is A342332.
%Y The version allowing partial equality is A342334.
%Y A002843 counts compositions with adjacent parts x <= 2y.
%Y A154402 counts partitions with adjacent parts x = 2y.
%Y A274199 counts compositions with adjacent parts x < 2y.
%Y A342094 counts partitions with adjacent parts x <= 2y (strict: A342095).
%Y A342096 counts partitions without adjacent x >= 2y (strict: A342097).
%Y A342098 counts partitions with adjacent parts x > 2y.
%Y A342330 counts compositions with x < 2y and y < 2x (strict: A342341).
%Y A342331 counts compositions with adjacent parts x = 2y or y = 2x.
%Y A342335 counts compositions with adjacent parts x >= 2y or y = 2x.
%Y A342337 counts partitions with adjacent parts x = y or x = 2y.
%Y A342338 counts compositions with adjacent parts x < 2y and y <= 2x.
%Y Cf. A003114, A003242, A034296, A167606, A342083, A342084, A342087, A342191, A342336, A342340.
%K nonn
%O 0,4
%A _Gus Wiseman_, Mar 10 2021
%E More terms from _Joerg Arndt_, Mar 12 2021