login
A342306
Number of pandiagonal Latin squares of order 2n+1.
5
1, 0, 240, 20160, 0, 319334400, 77127879628800, 0
OFFSET
0,3
COMMENTS
A pandiagonal Latin square is a Latin square in which the diagonal, antidiagonal and all broken diagonals and antidiagonals are transversals.
For orders 5, 7 and 11 all pandiagonal Latin squares are cyclic, so a(n) = A338562(n) for n < 6. For n=6 (order 13) this is not true (from Dabbaghian and Wu).
Pandiagonal Latin squares exist only for odd orders not divisible by 3. - Andrew Howroyd, May 26 2021
LINKS
A.O.L. Atkin, L. Hay, and R. G. Larson, Enumeration and construction of pandiagonal Latin squares of prime order, Computers & Mathematics with Applications, Volume. 9, Iss. 2, 1983, pp. 267-292.
Vahid Dabbaghian and Tiankuang Wu, Constructing non-cyclic pandiagonal Latin squares of prime orders, Journal of Discrete Algorithms 30, 2015.
FORMULA
a(n) = A338620(n) * (2*n+1)!.
EXAMPLE
Example of a cyclic pandiagonal Latin square of order 5:
0 1 2 3 4
2 3 4 0 1
4 0 1 2 3
1 2 3 4 0
3 4 0 1 2
Example of a cyclic pandiagonal Latin square of order 7:
0 1 2 3 4 5 6
2 3 4 5 6 0 1
4 5 6 0 1 2 3
6 0 1 2 3 4 5
1 2 3 4 5 6 0
3 4 5 6 0 1 2
5 6 0 1 2 3 4
Example of a cyclic pandiagonal Latin square of order 11:
0 1 2 3 4 5 6 7 8 9 10
2 3 4 5 6 7 8 9 10 0 1
4 5 6 7 8 9 10 0 1 2 3
6 7 8 9 10 0 1 2 3 4 5
8 9 10 0 1 2 3 4 5 6 7
10 0 1 2 3 4 5 6 7 8 9
1 2 3 4 5 6 7 8 9 10 0
3 4 5 6 7 8 9 10 0 1 2
5 6 7 8 9 10 0 1 2 3 4
7 8 9 10 0 1 2 3 4 5 6
9 10 0 1 2 3 4 5 6 7 8
For order 13 there is a square
7 1 0 3 6 5 12 2 8 9 10 11 4
2 3 4 10 0 7 6 9 12 11 5 8 1
4 11 1 7 8 9 10 3 6 0 12 2 5
6 5 8 11 10 4 7 0 1 2 3 9 12
8 9 2 5 12 11 1 4 3 10 0 6 7
3 6 12 0 1 2 8 11 5 4 7 10 9
10 0 3 2 9 12 5 6 7 8 1 4 11
1 7 10 4 3 6 9 8 2 5 11 12 0
11 4 5 6 7 0 3 10 9 12 2 1 8
5 8 7 1 4 10 11 12 0 6 9 3 2
12 2 9 8 11 1 0 7 10 3 4 5 6
9 10 11 12 5 8 2 1 4 7 6 0 3
0 12 6 9 2 3 4 5 11 1 8 7 10
that is pandiagonal but not cyclic (Dabbaghian and Wu).
CROSSREFS
Sequence in context: A232428 A338562 A342990 * A205256 A110163 A323981
KEYWORD
nonn,more,hard
AUTHOR
Eduard I. Vatutin, Mar 08 2021
EXTENSIONS
Zero terms for even orders removed by Andrew Howroyd, May 26 2021
STATUS
approved