login
A342243
Triangle T(n,p) read by rows: the number of n-celled polyominoes with perimeter 2p, 2 <= p <= 1+n.
5
1, 0, 1, 0, 0, 2, 0, 0, 1, 4, 0, 0, 0, 1, 11, 0, 0, 0, 1, 7, 27, 0, 0, 0, 0, 4, 21, 83, 0, 0, 0, 0, 2, 21, 91, 255, 0, 0, 0, 0, 1, 9, 89, 339, 847, 0, 0, 0, 0, 0, 6, 67, 393, 1360, 2829, 0, 0, 0, 0, 0, 1, 45, 325, 1713, 5255, 9734, 0, 0, 0, 0, 0, 1, 23, 275
OFFSET
1,6
LINKS
John Mason, Table of T(n,k) for n <= 18 (n <= 17 from R. J. Mathar)
FORMULA
A131487(e) = Sum_{e=2*n+p} T(n,p).
EXAMPLE
The triangle has rows n=1,2,3,... and columns p=2,3,4,5,...:
1;
0, 1;
0, 0, 2;
0, 0, 1, 4;
0, 0, 0, 1, 11;
0, 0, 0, 1, 7, 27;
0, 0, 0, 0, 4, 21, 83;
0, 0, 0, 0, 2, 21, 91, 255;
0, 0, 0, 0, 1, 9, 89, 339, 847;
0, 0, 0, 0, 0, 6, 67, 393, 1360, 2829;
0, 0, 0, 0, 0, 1, 45, 325, 1713, 5255, 9734;
...
CROSSREFS
Cf. A000105 (row sums), A057730 (column sums), A131482 (diagonal), A131487 (skew antidiagonal sums), A027709 (number of leading zeros per row), A100092 (first nonzero in each row).
Sequence in context: A259784 A145224 A138157 * A073429 A123634 A330140
KEYWORD
nonn,tabl,hard
AUTHOR
R. J. Mathar, Mar 07 2021
STATUS
approved