login
A342017
a(n) = A342007(A327860(n)), where A342007 is multiplicative with a(p^e) = p^floor(e/p), and A327860 is arithmetic derivative of A276086.
6
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1
OFFSET
1,8
FORMULA
MATHEMATICA
Block[{b = MixedRadix[Reverse@ Prime@ Range@ 12]}, Array[Function[k, Times @@ Map[#1^Floor[#2/#1] & @@ # &, FactorInteger[#]] &@ If[# < 2, 0, # Total[#2/#1 & @@@ FactorInteger[#]] ] &@ Abs[Times @@ Power @@@ # &@ Transpose@{Prime@ Range@ Length@ k, Reverse@ k}]]@ IntegerDigits[#, b] &, 105]] (* Michael De Vlieger, Mar 12 2021 *)
PROG
(PARI)
A327860(n) = { my(s=0, m=1, p=2, e); while(n, e = (n%p); m *= (p^e); s += (e/p); n = n\p; p = nextprime(1+p)); (s*m); };
A342007(n) = { my(f = factor(n)); for(k=1, #f~, f[k, 2] = floor(f[k, 2]/f[k, 1])); factorback(f); };
CROSSREFS
Cf. A003415, A276086, A327860, A342007, A342018 (positions of terms > 1).
Cf. also A341997.
Sequence in context: A191004 A191358 A204133 * A062378 A073753 A290602
KEYWORD
nonn
AUTHOR
Antti Karttunen, Mar 04 2021
STATUS
approved