login
A341959
G.f.: Product_{k>=1} Sum_{n>=0} x^(k*n) / (1 - x^(n+k)).
0
1, 2, 4, 9, 14, 29, 44, 77, 120, 195, 291, 453, 673, 998, 1460, 2101, 3034, 4287, 6051, 8430, 11766, 16098, 22209, 30078, 40881, 54914, 73814, 98159, 130804, 172507, 227608, 298254, 390262, 507721, 659731, 852727, 1100301, 1414461, 1813262, 2317895
OFFSET
0,2
EXAMPLE
G.f.: A(x) = 1 + 2*x + 4*x^2 + 9*x^3 + 14*x^4 + 29*x^5 + 44*x^6 + 77*x^7 + 120*x^8 + 195*x^9 + 291*x^10 + 453*x^11 + 673*x^12 + 998*x^13 + 1460*x^14 + 2101*x^15 + ...
PROG
(PARI) {a(n) = my(A = prod(k=1, n, sum(m=0, n, x^(k*m)/(1 - x^(m+k) +x*O(x^n)) )) ); polcoeff(A, n)}
for(n=0, 40, print1(a(n), ", "))
CROSSREFS
Sequence in context: A291465 A355606 A227377 * A173407 A113862 A244624
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 15 2021
STATUS
approved