login
A341937
Primes 2*p*q-2*q*r+r*s where p,q,r,s are consecutive primes.
2
17, 37, 59, 89, 167, 233, 439, 439, 683, 1021, 5807, 10427, 13043, 12569, 19163, 36887, 40493, 64579, 66587, 86291, 103699, 124693, 126839, 179743, 218137, 329627, 419927, 437113, 472133, 606997, 621031, 660917, 695771, 731033, 741569, 772649, 783701, 793673, 848273, 868639, 898823, 999959
OFFSET
1,1
COMMENTS
a(k) = 2*p*q-2*q*r+r*s where p = A341934(k) and p,q,r,s are consecutive primes.
LINKS
EXAMPLE
a(5) = 167 because A341934(5) = 11 and (p,q,r,s)=(11,13,17,19) are consecutive primes with 2*p*q-2*q*r+r*s = 167.
MAPLE
P:= select(isprime, [2, seq(i, i=3..10000, 2)]):
B:= select(i -> isprime(P[i+2]*P[i+3]-2*P[i+1]*(P[i+2]-P[i])), [$1..nops(P)-3]):
seq(P[i+2]*P[i+3]-2*P[i+1]*(P[i+2]-P[i]), i = B);
MATHEMATICA
Select[2#[[1]]#[[2]]-2#[[2]]#[[3]]+#[[3]]#[[4]]&/@Partition[Prime[Range[200]], 4, 1], PrimeQ] (* Harvey P. Dale, Oct 29 2023 *)
CROSSREFS
Cf. A341934.
Sequence in context: A363040 A295338 A059425 * A225077 A146328 A161549
KEYWORD
nonn
AUTHOR
J. M. Bergot and Robert Israel, Feb 23 2021
STATUS
approved