
Final computational work

Luis Mantilla

código:2182929

March 1, 2021

Given the language: L = {w ∈ Σ∗||w|a ≡ 0 (mod 2) ∧ |w|b + |w|c ≤ 3}.

1 AUTOMATON

Let’s note that we can divide this language into two types of Automata, one for |w|a ≡ 0 (mod 2) and

the other for |w|b + |w|c ≤ 3, separately remain as follows:

1. |w|a ≡ 0 (mod 2): Naming the initial state q0 , it can be seen that it is necessary two states,

calling the lack of q1,According to Figure 1, we can ensure that every time a word ends in the

state q0 has an even number of letters a, this way the only state of acceptance for this automaton

is the q0.

q0start q1

a

a

Figure 1: |w|a ≡ 0 (mod 2)

If we find the adjacency mtariz of this automata, we have the following, the green color relates

to the number of words accepted with a certain number of letters.

M1 =

(
0 1

1 0

)
(1)

Now if we calculate e characteristic polynomial, then PM1
= det(M1−λI4) we have the following

polynomial already factored:

PM1
= λ2 − 1 = (λ− 1)(λ+ 1)

That is, the recursive function for this language replacing λ=|Ln + 1| is:

|Ln+2| = |Ln|

this above is clear since if the number n of letters is for there will only be one word, which will

be |aaaa · · · a| = n and if it is odd it is clear that the automaton does not accept any words.

1

1 AUTOMATON 2

2. |w|b + |w|c ≤ 3: For this automaton it is clear that four Automata are needed as in Figure 2,

since at most the sum of the number of b− s plus the number of c− s it has to give a maximum

of 3, and as acceptance states are all.

p0start p1 p2 p3

b,c b,cb,c

Figure 2: |w|b + |w|c ≤ 3

It is clear to see that for a letter there are 2 accepted words, for 2 words there are 4, for 3 letters there

are 8 words, and for a greater number of letters there is no word that accepts the automaton, that

is, we can define a recursive formula of the language accepted by this automaton as follows |Ln| = 2n

para n < 4 with n natural.

Now let’s define the components of the language interception accepted by the above-mentioned Au-

tomata:

• M = (Σ, Q, F, q0, δ)

• Σ = {a, b, c}

• Q = {q0, q1, q2, q3, q4, q5, q6, q7}

• Initial state: q0

• Acceptance States: F = {q0, q2, q4, q6}

• Transition function δ

Below is the table representing the transition function:

δ a b c
q0 q1 q2 q2
q1 q0 q3 q3
q2 q3 q4 q4
q3 q2 q5 q5
q4 q5 q6 q6
q5 q4 q7 q7
q6 q7 - -
q7 q6 - -

Table 1: Transition function

2 REGULAR EXPRESSION 3

q0start q2

q1 q3

q4

q5

q6

q7

b,c

a
a

a

b,c

a a
a

b,c

a

b,c

a

b,c

b,c

Figure 3: Automaton

So we have the automaton that represents language: L = {w ∈ Σ∗||w|a ≡ 0 (mod 2) ∧ |w|b+|w|c ≤ 3}.

1.1 Observation

Now if we look closely, we have that the automaton of Figure 1 is repeating, the latter without being

returned, four times thanks to the nature of the automaton of Figure 2, that shows that we have the

same language repeated four times, later we will see the importance of this result.

2 Regular expression

Let’s find the regular expression, removing the states, as the first part let’s remove the state q0.

q0start q2

q3

q4

q5

q6

q7

” ” b,c

(aa)∗a(b ∨ c)

a

b,c

a a
a

a

b,c

a

b,c

b,c

Figure 4: without q0

2 REGULAR EXPRESSION 4

Now let’s remove the states q2 y q3, aśı:

q0start q4

q5

q6

q7

[((aa)∗a(b ∨ c)(aa)∗a) ∨ (b ∨ c)(aa)∗](b ∨ c)

(aa)∗a(b ∨ c)(aa)∗(b ∨ c)

a
a

a
a

b,c

b,c

Figure 5: without q2 y q3

We continue to take away the states q5 y q4

q0start

q6

q7

[((aa)∗a(b ∨ c)(aa)∗(b ∨ c)(aa)∗) ∨ ((((aa)∗a(b ∨ c)(aa)∗a) ∨ (b ∨ c)(aa)∗)(b ∨ c)(aa)∗a)](b ∨ c)

(aa)∗a(b ∨ c)(aa)∗(b ∨ c)(aa)∗(b ∨ c)

a
a

Figure 6: without q5 y q4

Now let’s move on to the state q7:

q0start q6

[((aa)∗a(b ∨ c)(aa)∗(b ∨ c)(aa)∗) ∨ ((((aa)∗a(b ∨ c)(aa)∗a) ∨ (b ∨ c)(aa)∗)(b ∨ c)(aa)∗a)](b ∨ c)

(aa)∗a(b ∨ c)(aa)∗(b ∨ c)(aa)∗(b ∨ c)(aa)∗a

Figure 7: without q7

2 REGULAR EXPRESSION 5

Finally let’s remove the state q6:

q0start

[[((aa)∗a(b ∨ c)(aa)∗(b ∨ c)(aa)∗) ∨ ((((aa)∗a(b ∨ c)(aa)∗a) ∨ (b ∨ c)(aa)∗)(b ∨ c)(aa)∗a)](b ∨ c)] ∨ [(aa)∗a(b ∨ c)(aa)∗(b ∨ c)(aa)∗(b ∨ c)(aa)∗a]

Figure 8: without q6

From the above we can deduce the regular expression, which that as follows:

[[((aa)∗a(b ∨ c)(aa)∗(b ∨ c)(aa)∗) ∨ ((((aa)∗a(b ∨ c)(aa)∗a) ∨ (b ∨ c)(aa)∗)(b ∨ c)(aa)∗a)](b ∨ c)]

∨[(aa)∗a(b ∨ c)(aa)∗(b ∨ c)(aa)∗(b ∨ c)(aa)∗a]

3 CENSUS FUNCTION 6

3 Census function

First of all we will find the adjacency matrix which is as follows:

M =

0 1 2 0 0 0 0 0

1 0 0 2 0 0 0 0

0 0 0 1 2 0 0 0

0 0 1 0 0 2 0 0

0 0 0 0 0 1 2 0

0 0 0 0 1 0 0 2

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

(2)

Let us observe that the terms in green are the words of length one that ends up in a state of acceptance,

which are q0,q2,q4,q6 respectively, Now let’s look at the different powers of this matrix adjacency:

I =

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

(3)

M2 =

1 0 0 4 4 0 0 0

0 1 4 0 0 4 0 0

0 0 1 0 0 4 4 0

0 0 0 1 4 0 0 4

0 0 0 0 1 0 0 4

0 0 0 0 0 1 4 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

(4)

M3 =

0 1 6 0 0 12 8 0

1 0 0 6 12 0 0 8

0 0 0 1 6 0 0 12

0 0 1 0 0 6 12 0

0 0 0 0 0 1 6 0

0 0 0 0 1 0 0 6

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

(5)

3 CENSUS FUNCTION 7

M4 =

1 0 0 8 24 0 0 32

0 1 8 0 0 24 32 0

0 0 1 0 0 8 24 0

0 0 0 1 8 0 0 24

0 0 0 0 1 0 0 8

0 0 0 0 0 1 8 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

(6)

M5 =

0 1 10 0 0 40 80 0

1 0 0 10 40 0 0 80

0 0 0 1 10 0 0 40

0 0 1 0 0 10 40 0

0 0 0 0 0 1 10 0

0 0 0 0 1 0 0 10

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

(7)

M6 =

1 0 0 12 60 0 0 160

0 1 12 0 0 60 160 0

0 0 1 0 0 12 60 0

0 0 0 1 12 0 0 60

0 0 0 0 1 0 0 12

0 0 0 0 0 1 12 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

(8)

M7 =

0 1 14 0 0 84 280 0

1 0 0 14 84 0 0 280

0 0 0 1 14 0 0 84

0 0 1 0 0 14 84 0

0 0 0 0 0 1 14 0

0 0 0 0 1 0 0 14

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

(9)

3 CENSUS FUNCTION 8

Now if we make the table that represents me the first row of each array, the words that start in the

state q0, we have the following table:

n an bn cn dn en fn gn hn |Ln|
0 1 0 0 0 0 0 0 0 1
1 0 1 2 0 0 0 0 0 2
2 1 0 0 4 4 0 0 0 5
3 0 1 6 0 0 12 8 0 14
4 1 0 0 8 24 0 0 32 25
5 0 1 10 0 0 40 80 0 90
6 1 0 0 12 60 0 0 160 61
7 0 1 14 0 0 84 280 0 294

Table 2: censo

The Column |Ln| count accepted words as the sum of the number of words in the acceptance States.

Which we can say that the census function has the first 8 initial values:

{1, 2, 5, 14, 25, 90, 61, 294, · · · }

Now to find the explicit census function, we will first find the characteristic polynomial, first pass

the adjacency matrix to the normal form of Jordan, calculating PM (λ) = det(M − λI8) be I8 is the

identity matrix of size 8x8 y λ the random variable as well:

M − λI8 =

0− λ 1 2 0 0 0 0 0

1 0− λ 0 2 0 0 0 0

0 0 0− λ 1 2 0 0 0

0 0 1 0− λ 0 2 0 0

0 0 0 0 0− λ 1 2 0

0 0 0 0 1 0− λ 0 2

0 0 0 0 0 0 0− λ 1

0 0 0 0 0 0 1 0− λ

(10)

them:

PM (λ) = λ8 − 4λ6 + 6λ4 − 4λ2 + 1 (11)

Therefore the law of recurrence is:

|Ln+8| = 4|Ln+6| − 6|Ln+4|+ 4|Ln+2| − |Ln| (12)

with initial values |L0| = 1, |L1| = 2, |L2| = 5, |L3| = 14, |L4| = 25, |L5| = 90, |L6| = 61, |L7| = 294.

The characteristic polynomial can be factorized, let’s find the roots of this polynomial with their

respective multiplicities, first make a variable change, µ = λ2, then the polynomial equal to zero

remains as follows:

0 = µ4 − 4µ3 + 6µ2 − 4µ+ 1

It is easy to see that the above polynomial can be written as follows:

0 = (µ− 1)4

3 CENSUS FUNCTION 9

Now substituting for the variable change, we have the following:

0 = (λ2 − 1)4 = ((λ− 1)(λ+ 1))4

The latter is evidenced by observation 1.1, since it had been concluded that the automaton of Figure

1, is repeated 4 times in the latter automaton M , for this reason and by the Cayley-Hamilton The-

orem, The because of the equation (11) and the law of recurrence of the equation (12) can be deduced.

Now if we calculate the normal Jordan form of the Matrix M , we have the following:

J =

1 1 0 0 0 0 0 0

0 1 1 0 0 0 0 0

0 0 1 1 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 −1 1 0 0

0 0 0 0 0 −1 1 0

0 0 0 0 0 0 −1 1

0 0 0 0 0 0 0 −1

(13)

Given this matrix, let’s look for a generalization of this, since if we have the general form of the matrix,

it will give us an idea of how to construct our census function |Ln|.

Let’s prove by induction that the general form and we will call it Jn:

1 n 1
2n

2 − 1
2n

1
6n

3 − 1
2n

2 + 1
3n 0 0 0 0

0 1 n 1
2n

2 − 1
2n 0 0 0 0

0 0 1 n 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 (−1)n −(−1)nn 1
2 (n2 − n)(−1)n − 1

6 (n3 − 3n2 − 2n)(−1)n 0

0 0 0 0 0 (−1)n −(−1)nn 1
2 (n2 − n)(−1)n

0 0 0 0 0 0 (−1)n −(−1)nn

0 0 0 0 0 0 0 (−1)n

Let’s note that for n = 1, it is clear that the matrix is left to us of the form:

J =

1 1 0 0 0 0 0 0

0 1 1 0 0 0 0 0

0 0 1 1 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 −1 1 0 0

0 0 0 0 0 −1 1 0

0 0 0 0 0 0 −1 1

0 0 0 0 0 0 0 −1

(14)

3 CENSUS FUNCTION 10

Now suppose that it is fulfilled for n,missing show for n+ 1, for this let’s make the product of arrays

of Jn · Jand as a result we have the following matrix, for the sake of space, we are going to use the

quadrants of the matrices that interest us, which are, the upper left end and the lower right end:
1 n+ 1 1

2 (n+ 1)
2 − 1

2 (n+ 1) 1
6 (n+ 1)

3 − 1
2 (n+ 1)

2
+ 1

3 (n+ 1)

0 1 n 1
2n

2 − 1
2n

0 0 1 n

0 0 0 1

and

(−1)(n+1) −(−1)(n+1)(n + 1) 1

2 ((n + 1)2 − (n + 1))(−1)(n+1) − 1
6 ((n + 1)3 − 3(n + 1)2 − 2(n+1))(−1)(n+1) 0

0 (−1)(n+1) −(−1)(n+1)(n + 1) 1
2 ((n + 1)2 − (n + 1))(−1)(n+1)

0 0 (−1)(n+1) −(−1)(n+1)(n + 1)

0 0 0 (−1)(n+1)

From the above it is shown that it is fulfilled for n + 1 entonces then by induction we can say that

the general form of the normal Jordan form of the Matrix M .

Looking at The Matrix J podemos we can realize from the behavior of its diagonal that the census

function has to behave as follows:

|Ln| = α1 + α2n+ α3n
2 + α4n

3 + (−1)nα5 + (−1)nα6n+ (−1)nα7n
2 + (−1)nα8n

3

Be αi constant.

Now for Table 2, we have the following system of equations with the variables {α1, α2, α3, α4, α5, α6, α7, α8}:

1 0 0 0 1 0 0 0 1

1 1 1 1 −1 −1 −1 −1 2

1 2 4 8 1 2 4 8 5

1 3 9 27 −1 −3 −9 −27 14

1 4 16 67 1 4 16 64 25

1 5 25 125 −1 −5 −25 −125 90

1 6 36 216 1 6 36 216 61

1 7 49 343 −1 −7 −49 −343 294

now since the Matrix has determinant other than zero, we say that it has only solution then it remains

only to solve the system of equations, which we will have the following result:

α1 = 1/2

α2 = 4/3

α3 = −1

α4 = 2/3

α5 = 1/2

α6 = −10/3

α7 = 3

α8 = −2/3

Given the above we deduce the census function as follows:

|Ln| =
1

2
+

4

3
n− n2 +

2

3
n3 +

1

2
(−1)n − 10

3
(−1)nn+ 3(−1)nn2 − 2

3
(−1)nn3

4 SIMULATION IN SAGEMATH 11

4 Simulation in SAGEMATH

In this section we will perform a simulation using the language of SageMAth, about the alphabet

{a, b, c}.

Let’s find the words with only one letter, which are 2 words which are:

{b, c}

Let’s find the words with two letters, which are 5 words which are:

{aa, bc, cb, bb, cc}

4 SIMULATION IN SAGEMATH 12

Let’s find the words with 3 letters, which are 14 words which are:

{aab, aac, aba, aca, baa, bbb, bbc, bcb, bcc, caa, cbb, cbc, ccb, bbb}

Let’s find the words with 4 letters, which are 25 words which are:

{aaaa, aabb, aabc, aacb, aacc, abab, abac, abba, abca, acab, acac, acba

, baab, baac, baba, baca, bbaa, bcaa, caab, caac, caba, caca, cbaa, ccaa}

5 BIBLIOGRAPHY 13

5 BIBLIOGRAPHY

• De Castro, Rodrigo Teoŕıa de la Computación Universidad Nacional de Colombia.

• Sagemath. https://cocalc.com.

• OEIS On-line Enciclopedy of Integer Sequences. https://oeis.org/?language=spanish.

	AUTOMATON
	Observation

	Regular expression
	Census function
	Simulation in SAGEMATH
	BIBLIOGRAPHY

