login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A341894 For square n > 0, a(n) = 0; for nonsquare n > 0, a(n) is the rank r such that t(r) + t(r-1) = u(r) - u(r-1) - 1, where u(r) and t(r) are indices of some triangular numbers in the Diophantine relation T(u(r)) = n*T(t(r)). 1
0, 1, 1, 0, 2, 2, 2, 2, 0, 3, 2, 2, 4, 2, 2, 0, 2, 2, 3, 2, 4, 4, 2, 2, 0, 3, 2, 4, 4, 2, 4, 2, 2, 2, 2, 0, 2, 2, 2, 4, 4, 2, 4, 2, 4, 6, 2, 2, 0, 3, 3, 4, 4, 2, 4, 2, 4, 4, 2, 2, 8, 2, 2, 0, 2, 4, 4, 2, 4, 4, 4, 2, 6, 2, 2, 6, 4, 4, 2, 2, 0, 3, 2, 2, 8, 4, 2, 4, 4, 2, 6, 4, 4, 4, 2, 4, 4, 2, 2, 0, 2, 2, 4, 2, 4, 8, 2, 2, 8, 2 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,5
COMMENTS
Let t(i) and u(j) be the indices of triangular numbers that satisfy the Diophantine relation T(u(j)) = n*T(t(i)) for some integers i and j. The number of solutions (t(i), u(j)) of T(u(j)) = n*T(t(i)) is 0 or 1 for square n, and an infinity for nonsquare n.
For square n, a(n) is arbitrarily set to 0.
For nonsquare n, a(n) is the index r in the sequence of t(i) and u(j) such that t(r) + t(r-1) = u(r) - u(r-1) - 1.
Alternatively, for nonsquare n, a(n) is the index r such that the ratio t(i)/t(i-r) is decreasing monotonically without jumps for increasing values of i.
Alternatively, for n > 4, a(n) is the index r such that the ratio t(r)/t(r-1) varies between (s+1)/(s-1) and (s+2)/s, with s = [sqrt(n)], where [x] = floor(x).
Alternatively, for nonsquare n, a(n) is the number of fundamental solutions (X_f, Y_f) of the generalized Pell equation X^2 - n*Y^2 = 1 - n providing odd solutions, i.e., with X_f odd and Y_f odd (or Y_f even if y_f is odd, where y_f is the fundamental solution of the associated simple Pell equation x^2 - n*y^2 = 1).
REFERENCES
J. S. Chahal and H. D'Souza, "Some remarks on triangular numbers", in A.D. Pollington and W. Mean, eds., Number Theory with an Emphasis on the Markov Spectrum, Lecture Notes in Pure Math, Dekker, New York, 1993, 61-67.
LINKS
T. Breiteig, Quotients of triangular numbers, The Mathematical Gazette, 99, 2015, 243-255.
Keith Matthews, The Diophantine Equation x^2 - Dy^2 = N, D > 0, in integers, Expositiones Mathematicae, 18, 2000, 323-331.
Vladimir Pletser, Searching for Multiple of Triangular Numbers being Triangular Numbers, ResearchGate, DOI: 10.13140/RG.2.2.35428.91527, 2021.
Vladimir Pletser, Triangular Numbers Multiple of Triangular Numbers and Solutions of Pell Equations, arXiv: 2102.13494 [math.NT], 2021.
Vladimir Pletser, Recurrent Relations for Multiple of Triangular Numbers being Triangular Numbers, arXiv: 2101.00998 [math.NT], 2021.
EXAMPLE
The following table gives the first values of nonsquare n and a(n) and the sequences yielding the values of t, u, T(t) and T(u) such that T(u) = n*T(t).
n 2 3 5 6 7 8 10
a(n) 1 1 2 2 2 2 3
With a(n) = r, the definition t(r) + t(r-1) = u(r) - u(r-1) - 1 yields:
- For n = 2, a(n) = 1: A053141(1) + A053141(0) = A001652(1) - A001652(0) - 1, i.e., 2 + 0 = 3 + 0 - 1 = 2.
- For n = 5, a(n) = 2: A077259(2) + A077259(1) = A077262(2) - A077262(1) - 1, i.e., 6 + 2 = 14 - 5 - 1 = 8.
- For n = 10, a(n) = 3: A341893(3+1*) + A341893(2+1*) = A341895(3+1*) - A341895(2+1*) - 1, i.e., 12 + 6 = 39 - 20 - 1 = 18.
Note that for those sequences marked with an *, the first term 0 appears for n = 1, contrary to all the other sequences, where the first term 0 appears for n = 0; the numbering must therefore be adapted and 1 must be added to compensate for this shift in indices.
The monotonic decrease of t(i)/t(i-r) can be seen also as:
- For n = 2, a(n) = 1: for 1 <= i <= 6, A053141(i)/A053141(i-1) decreases monotonically from 7 to 5.829.
- For n = 5, a(n) = 2: for 3 <= i <= 8, A077259(i)/A077259(i-2) decreases monotonically from 22 to 17.948, while A077259(i)/A077259(i-1) takes values alternatively varying between 3 and 2.618 and between 7.333 and 6.855.
- For n = 10, a(n) = 3: for 4 <= i <= 10, A341893(i)/A341893(i-3) decreases monotonically from 55 to 38, while A077259(i) / A077259(i-1) takes values alternatively varying between 6 and 4.44 and between 2 and 1.925.
For n > 4, the relation (s+1)/(s-1) <= t(r)/t(r-1) <= (s+2)/s, with s = [sqrt(n)], yields:
- For n = 5, a(n) = 2: A077259(2)/A077259(1) = 6/2 = 3, and s = [sqrt(5)] = 2, (s+1)/(s-1) = 3 and (s+2)/s = 2.
- For n = 10, a(n) = 3: A077259(3+1*)/A077259(2+1*) = 12/6 = 2, and s = [sqrt(10)] = 3, (s+1)/(s-1) = 2 and (s+2)/s = 5/3 = 1.667.
Finally, the number of fundamental solutions of the generalized Pell equation is as follows.
- For n = 2, X^2 - 2*Y^2 = -1 has a single fundamental solution, (X_f, Y_f) = (1, 1), and the rank a(n) is 1.
- For n = 5, X^2 - 5*Y^2 = -4 has two fundamental solutions, (X_f, Y_f) = (1, 1) and (-1, 1), and the rank a(n) is 2.
- For n = 10, X^2 - 10*Y^2 = -9 has three fundamental solutions, (X_f, Y_f) = (1, 1), (-1, 1), and (9, 3), and the rank a(n) is 3.
CROSSREFS
Sequence in context: A268686 A113306 A181089 * A171932 A358094 A305629
KEYWORD
nonn
AUTHOR
Vladimir Pletser, Mar 06 2021
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 24 10:00 EDT 2024. Contains 371935 sequences. (Running on oeis4.)