OFFSET
0,1
COMMENTS
These may be called rooted [n,3] triangulations.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..500
K. A. Penson, K. Górska, A. Horzela, and G. H. E. Duchamp, Hausdorff moment problem for combinatorial numbers of Brown and Tutte: exact solution, arXiv:2209.06574 [math.CO], 2022.
FORMULA
a(n) = 1008*binomial(4*n+7, n)/((3*n+8)*(3*n+9)).
D-finite with recurrence 3*(3*n+7)*(n+3)*(3*n+8)*a(n) +(-445*n^3-2164*n^2-3473*n-1838)*a(n-1) +56*(4*n+1)*(2*n+1)*(4*n+3)*a(n-2)=0. - R. J. Mathar, Jul 31 2024
D-finite with recurrence 3*n*(3*n+7)*(n+3)*(3*n+8)*a(n) -8*(4*n+5)*(2*n+3)*(4*n+7)*(n+1)*a(n-1)=0. - R. J. Mathar, Jul 31 2024
MATHEMATICA
Array[1008 Binomial[4 # + 7, #]/((3 # + 8) (3 # + 9)) &, 21, 0] (* Michael De Vlieger, Feb 22 2021 *)
PROG
(PARI) a(n) = {1008*binomial(4*n+7, n)/((3*n+8)*(3*n+9))}
CROSSREFS
KEYWORD
nonn
AUTHOR
Andrew Howroyd, Feb 21 2021
STATUS
approved