login
Array read by antidiagonals: T(n,m) is the number of maximum matchings in the rook graph K_n X K_m.
5

%I #9 Mar 15 2021 17:53:30

%S 1,1,1,1,1,1,1,1,1,1,1,3,2,3,1,1,3,4,4,3,1,1,15,16,72,16,15,1,1,15,56,

%T 132,132,56,15,1,1,105,376,7020,2016,7020,376,105,1,1,105,1912,17280,

%U 44928,44928,17280,1912,105,1,1,945,17984,1920240,1551744,22615200,1551744,1920240,17984,945,1

%N Array read by antidiagonals: T(n,m) is the number of maximum matchings in the rook graph K_n X K_m.

%C In the case that both m and n are odd a single vertex is not covered, otherwise the maximum matchings are perfect matchings.

%H Andrew Howroyd, <a href="/A341850/b341850.txt">Table of n, a(n) for n = 0..527</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/MaximumIndependentEdgeSet.html">Maximum Independent Edge Set</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RookGraph.html">Rook Graph</a>

%F T(n,m) = T(m,n).

%e Array begins:

%e ======================================================

%e n\m | 0 1 2 3 4 5 6

%e ----+-------------------------------------------------

%e 0 | 1 1 1 1 1 1 1 ...

%e 1 | 1 1 1 3 3 15 15 ...

%e 2 | 1 1 2 4 16 56 376 ...

%e 3 | 1 3 4 72 132 7020 17280 ...

%e 4 | 1 3 16 132 2016 44928 1551744 ...

%e 5 | 1 15 56 7020 44928 22615200 243319680 ...

%e 6 | 1 15 376 17280 1551744 243319680 61903180800 ...

%e ...

%Y Rows n=1..4 are A133221(n+1), A081919, A341851, A341852.

%Y Main diagonal is A289197.

%Y Cf. A270227 (matchings), A286070, A341847 (maximal matchings).

%K nonn,tabl

%O 0,12

%A _Andrew Howroyd_, Feb 21 2021