login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A341753 Expansion of the 2-adic integer 17^(1/4) that ends in 01. 4
1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

0

COMMENTS

Also square root of A322217.

Over the 2-adic integers, for k == 1 (mod 16), there are 2 solutions to x^4 = k, one ends in 01 and the other ends in 11. This sequence gives the former one. See A341751 for detailed information.

LINKS

Jianing Song, Table of n, a(n) for n = 0..1000

FORMULA

a(0) = 1, a(1) = 0; for n >= 2, a(n) = 0 if A341751(n)^4 - 17 is divisible by 2^(n+3), otherwise 1.

a(n) = 1 - A341754(n) for n >= 1.

For n >= 2, a(n) = (A341751(n+1) - A341751(n))/2^n.

A341753^2 = A322217.

EXAMPLE

If x = ...11011101110011000100111100101110110101101, then x^2 = ...1111001100110011110100110010011011101001 = A322217, x^4 = 10001_2 = 17.

PROG

(PARI) a(n) = truncate(sqrtn(17+O(2^(n+3)), 4))\2^n

CROSSREFS

Cf. A341751 (successive approximations of the 2-adic fourth root of 17), A322217.

Approximations of p-adic fourth-power roots:

this sequence, A341754 (2-adic, 17^(1/4));

A325489, A325490, A325491, A325492 (5-adic, 6^(1/4));

A324085, A324086, A324087, A324153 (13-adic, 3^(1/4)).

Sequence in context: A125144 A115198 A005614 * A267605 A319843 A309847

Adjacent sequences:  A341750 A341751 A341752 * A341754 A341755 A341756

KEYWORD

nonn,base

AUTHOR

Jianing Song, Feb 18 2021

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 10 07:36 EDT 2021. Contains 342843 sequences. (Running on oeis4.)