|
|
A341753
|
|
Expansion of the 2-adic integer 17^(1/4) that ends in 01.
|
|
4
|
|
|
1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0
|
|
COMMENTS
|
Also square root of A322217.
Over the 2-adic integers, for k == 1 (mod 16), there are 2 solutions to x^4 = k, one ends in 01 and the other ends in 11. This sequence gives the former one. See A341751 for detailed information.
|
|
LINKS
|
Jianing Song, Table of n, a(n) for n = 0..1000
|
|
FORMULA
|
a(0) = 1, a(1) = 0; for n >= 2, a(n) = 0 if A341751(n)^4 - 17 is divisible by 2^(n+3), otherwise 1.
a(n) = 1 - A341754(n) for n >= 1.
For n >= 2, a(n) = (A341751(n+1) - A341751(n))/2^n.
A341753^2 = A322217.
|
|
EXAMPLE
|
If x = ...11011101110011000100111100101110110101101, then x^2 = ...1111001100110011110100110010011011101001 = A322217, x^4 = 10001_2 = 17.
|
|
PROG
|
(PARI) a(n) = truncate(sqrtn(17+O(2^(n+3)), 4))\2^n
|
|
CROSSREFS
|
Cf. A341751 (successive approximations of the 2-adic fourth root of 17), A322217.
Approximations of p-adic fourth-power roots:
this sequence, A341754 (2-adic, 17^(1/4));
A325489, A325490, A325491, A325492 (5-adic, 6^(1/4));
A324085, A324086, A324087, A324153 (13-adic, 3^(1/4)).
Sequence in context: A125144 A115198 A005614 * A267605 A319843 A309847
Adjacent sequences: A341750 A341751 A341752 * A341754 A341755 A341756
|
|
KEYWORD
|
nonn,base
|
|
AUTHOR
|
Jianing Song, Feb 18 2021
|
|
STATUS
|
approved
|
|
|
|