login
A341715
a(n) = smallest prime of the form n||n+1||n+2||...||n+k, where || denotes decimal concatenation, or -1 if no such prime exists.
10
2, 3, 4567, 5, 67, 7, 89
OFFSET
2,1
COMMENTS
a(1) is unknown, but is believed to exist (see A007908). The corresponding value of k, if it exists, is known to be at least 300000, so in any case this prime would be too large to include in an OEIS entry, which is why this sequence has offset 2.
a(9) = 9||10||...||187 (see Example section), but that is too large to show in the data field. a(A030457(n)) = A030457(n)||A030457(n)+1 and k = 1 for n > 1. If m is in A030470 but not in A030457, then a(m) = m||m+1||m+2||m+3 and k = 3. Of course a(p) = p and k = 0 for p prime. - Chai Wah Wu, Feb 22 2021
For the corresponding values of k and n+k, see A341716 and A341717.
See also A140793 = (23, 345...109, 4567, 567...17, ...), A341720, and A084559 for the variant with k >= 1, so that a(n) > n also for prime n. - M. F. Hasler, Feb 22 2021
LINKS
FORMULA
a(n) = concatenate(n, ..., A084559(n)) or a(n) = n if n is prime. - M. F. Hasler, Feb 22 2021
EXAMPLE
Starting at 12, 13, 14, 15, 17, 19, 20 we get the primes 1213, 13, 14151617, 1516171819, 17, 19, 20212223, which are all terms of this sequence.
Here is a(9) from Chai Wah Wu, Feb 22 2021, a 445-digit number:
910111213141516171819202122232425262728293031323334353637383940414243444546\
47484950515253545556575859606162636465666768697071727374757677787980818\
28384858687888990919293949596979899100101102103104105106107108109110111\
11211311411511611711811912012112212312412512612712812913013113213313413\
51361371381391401411421431441451461471481491501511521531541551561571581\
59160161162163164165166167168169170171172173174175176177178179180181182\
183184185186187
a(16) = 16||17||...||43 is prime. Also for a(10), I searched up to k <= 10000, so if it exists it will have tens of thousands of decimal digits. Some other big terms are: for n = 18, k = 3589; for n = 35, k = 568; for n = 66, k = 937; for n = 275, k = 814. - Chai Wah Wu, Feb 22 2021
MATHEMATICA
Array[Block[{k = #, s = #}, While[! PrimeQ[s], k++; s = FromDigits[IntegerDigits[s]~Join~IntegerDigits[k]]]; s] &, 8, 2] (* Michael De Vlieger, Feb 22 2021 *)
PROG
(Python)
from sympy import isprime
def A341715(n):
m, k = n, n
while not isprime(m):
k += 1
m = int(str(m)+str(k))
return m # Chai Wah Wu, Feb 22 2021
(PARI) A341715(n)=if(isprime(n), n, eval(concat([Str(k)|k<-[n..A084559(n)]]))) \\ M. F. Hasler, Feb 22 2021
CROSSREFS
If k in the definition is allowed to be zero we get [the present sequence, A341716, A341717], but if we require k>0 we get [A140793, A341720, A084559].
See A075022 for the largest prime factor of 1||2||...||n.
Sequence in context: A290972 A097301 A020345 * A085943 A068661 A271631
KEYWORD
nonn,base,more,nice
AUTHOR
N. J. A. Sloane, Feb 21 2021
STATUS
approved