login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = A120963(2*n)/2.
3

%I #19 May 12 2022 14:04:09

%S 3,12,39,112,292,710,1629,3567,7505,15266,30140,57983,108981,200625,

%T 362433,643653,1125269,1939149,3297411,5538254,9195371,15104245,

%U 24561098,39562657,63160404,99987453,157029090,244754385,378754786,582124254,888874067,1348842728

%N a(n) = A120963(2*n)/2.

%C A bisection of A341710.

%p with(numtheory):

%p b:= proc(n) option remember; nops(invphi(n)) end:

%p g:= proc(n) option remember; `if`(n=0, 1, add(

%p g(n-j)*add(d*b(d), d=divisors(j)), j=1..n)/n)

%p end:

%p a:= n-> g(2*n)/2:

%p seq(a(n), n=1..40); # _Alois P. Heinz_, Feb 19 2021

%t terms = 64; (* number of terms of A120963 *)

%t nmax = Floor[terms/2];

%t S[m_] := S[m] = CoefficientList[Product[1/(1 - x^EulerPhi[k]),

%t {k, 1, m*terms}] + O[x]^(terms+1), x];

%t S[m = 1];

%t S[m++];

%t While[S[m] != S[m-1], m++];

%t A120963 = S[m];

%t a[n_ /; 1 <= n <= nmax] := A120963[[2n+1]]/2;

%t Table[a[n], {n, 1, nmax}] (* _Jean-François Alcover_, May 12 2022 *)

%Y Cf. A120963, A341710, A341711.

%K nonn

%O 1,1

%A _N. J. A. Sloane_, Feb 19 2021