%I #9 Feb 26 2021 06:32:38
%S 0,0,1,0,1,1,1,0,1,1,1,0,1,1,2,0,1,1,1,1,2,1,1,0,1,1,2,1,1,1,1,0,2,1,
%T 2,1,1,1,2,0,1,2,1,1,3,1,1,0,1,1,2,1,1,2,2,0,2,1,1,1,1,1,3,0,2,2,1,1,
%U 2,1,1,1,1,1,3,1,2,2,1,0,2,1,1,1,2,1,2,1,1,2,2,1,2,1,2,0,1,1,3,1,1,2,1,1,4
%N Number of strictly superior odd divisors of n.
%C We define a divisor d|n to be strictly superior if d > n/d. Strictly superior divisors are counted by A056924 and listed by A341673.
%H Antti Karttunen, <a href="/A341594/b341594.txt">Table of n, a(n) for n = 1..65537</a>
%e The a(n) divisors for n = 3, 15, 45, 105, 315, 405, 945, 1575, 1890:
%e 3 5 9 15 21 27 35 45 45
%e 15 15 21 35 45 45 63 63
%e 45 35 45 81 63 75 105
%e 105 63 135 105 105 135
%e 105 405 135 175 189
%e 315 189 225 315
%e 315 315 945
%e 945 525
%e 1575
%t Table[Length[Select[Divisors[n],OddQ[#]&&#>n/#&]],{n,100}]
%o (PARI) A341594(n) = sumdiv(n,d,(d%2)*(d>(n/d))); \\ _Antti Karttunen_, Feb 23 2021
%Y On odd indices, equals A056924 (number of strictly superior divisors).
%Y The inferior version is A069288.
%Y Positions of zeros are A116882.
%Y Positions of nonzero terms are A116883.
%Y The strictly inferior version is A333805.
%Y The version for squarefree instead of odd divisors is A341595.
%Y The version for prime instead of odd divisors is A341642.
%Y The version for prime-power instead of odd divisors is A341644.
%Y The superior version is A341675.
%Y A033676 selects the greatest inferior divisor.
%Y A033677 selects the smallest superior divisor.
%Y A038548 counts superior (or inferior) divisors.
%Y A140271 selects the smallest strictly superior divisor.
%Y A207375 lists central divisors.
%Y A341673 lists strictly superior divisors.
%Y - Inferior: A063962, A066839, A161906, A217581, A333749, A333750.
%Y - Superior: A051283, A059172, A063538, A063539, A070038, A161908, A341591, A341592, A341593, A341676.
%Y - Strictly Inferior: A060775, A070039, A333806, A341596, A341674.
%Y - Strictly Superior: A048098, A064052, A238535, A341643, A341645, A341646.
%Y Cf. A000005, A000203, A000265, A001222, A001248, A005408, A006530, A020639, A027193, A058695, A340101.
%K nonn
%O 1,15
%A _Gus Wiseman_, Feb 23 2021