login
A341575
E.g.f.: log(1 - log(1 - x))^2 / 2.
1
1, 0, 4, 5, 58, 217, 2035, 13470, 134164, 1243770, 14129410, 164244808, 2151576620, 29671566836, 444758323628, 7055358559376, 119546765395744, 2139179551573104, 40486788832168944, 805969129348431936, 16860672502118423136, 369459637224850523808, 8467140450141232328160
OFFSET
2,3
FORMULA
a(n) = Sum_{k=2..n} |Stirling1(n, k)| * Stirling1(k, 2).
a(n) = (-1)^n * Sum_{k=2..n} Stirling1(n, k) * (k-1)! * H(k-1), where H(k) is the k-th harmonic number.
MATHEMATICA
nmax = 24; CoefficientList[Series[Log[1 - Log[1 - x]]^2/2, {x, 0, nmax}], x] Range[0, nmax]! // Drop[#, 2] &
Table[Sum[Abs[StirlingS1[n, k]] StirlingS1[k, 2], {k, 2, n}], {n, 2, 24}]
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Feb 15 2021
STATUS
approved