login
A341494
Number of partitions of n into an even number of parts such that the set of even parts has only one element.
5
0, 0, 0, 1, 1, 3, 1, 7, 4, 13, 6, 23, 12, 39, 20, 63, 34, 98, 53, 150, 82, 225, 124, 329, 184, 475, 267, 676, 381, 948, 539, 1317, 752, 1810, 1038, 2460, 1417, 3319, 1920, 4442, 2578, 5897, 3437, 7780, 4547, 10200, 5980, 13285, 7815, 17214, 10154, 22191, 13122
OFFSET
0,6
LINKS
FORMULA
G.f.: (P(x,1) + P(x,-1))/2 where P(x,c) = (Sum_{k>=1} c*x^(2*k)/(1-c*x^(2*k))) / (Product_{k>=1} 1-c*x^(2*k-1)).
a(n) = A090867(n) - A341495(n).
EXAMPLE
The a(3) = 1 partition is: 1+2.
The a(4) = 1 partition is: 2+2.
The a(5) = 3 partitions are: 1+4, 2+3, 1+1+1+2.
MATHEMATICA
P[n_, c_] := c*Sum[x^(2k)/(1 - c*x^(2k)) + O[x]^n, {k, 1, n/2}]/
Product[1 - c*x^(2k - 1) + O[x]^n, {k, 1, n/2}];
CoefficientList[(P[100, 1] + P[100, -1])/2, x] (* Jean-François Alcover, May 24 2021, from PARI code *)
PROG
(PARI)
P(n, c)={c*sum(k=1, n\2, x^(2*k)/(1-c*x^(2*k)) + O(x*x^n))/prod(k=1, n\2, 1-c*x^(2*k-1) + O(x*x^n))}
seq(n)={Vec(P(n, 1) + P(n, -1), -(n+1))/2}
CROSSREFS
KEYWORD
nonn
AUTHOR
Andrew Howroyd, Feb 13 2021
STATUS
approved