%I #13 Feb 14 2021 13:14:23
%S 3,7,13,15,19,29,33,37,43,51,53,61,69,71,75,77,79,89,93,101,107,113,
%T 119,123,131,139,141,151,161,163,165,173,177,181,193,199,201,217,219,
%U 221,223,229,239,249,251,255,263,271,281,287,291,293,299,309,311,317
%N Heinz numbers of integer partitions whose only even part is the smallest.
%C The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are numbers whose only even prime index (counting multiplicity) is the smallest.
%e The sequence of partitions together with their Heinz numbers begins:
%e 3: (2) 77: (5,4) 165: (5,3,2)
%e 7: (4) 79: (22) 173: (40)
%e 13: (6) 89: (24) 177: (17,2)
%e 15: (3,2) 93: (11,2) 181: (42)
%e 19: (8) 101: (26) 193: (44)
%e 29: (10) 107: (28) 199: (46)
%e 33: (5,2) 113: (30) 201: (19,2)
%e 37: (12) 119: (7,4) 217: (11,4)
%e 43: (14) 123: (13,2) 219: (21,2)
%e 51: (7,2) 131: (32) 221: (7,6)
%e 53: (16) 139: (34) 223: (48)
%e 61: (18) 141: (15,2) 229: (50)
%e 69: (9,2) 151: (36) 239: (52)
%e 71: (20) 161: (9,4) 249: (23,2)
%e 75: (3,3,2) 163: (38) 251: (54)
%t primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t Select[Range[2,100],EvenQ[First[primeMS[#]]]&&And@@OddQ[Rest[primeMS[#]]]&]
%Y These partitions are counted by A087897, shifted left once.
%Y Terms of A340933 can be factored into elements of this sequence.
%Y The odd version is A341446.
%Y A000009 counts partitions into odd parts, ranked by A066208.
%Y A001222 counts prime factors.
%Y A005843 lists even numbers.
%Y A026804 counts partitions whose least part is odd, ranked by A340932.
%Y A026805 counts partitions whose least part is even, ranked by A340933.
%Y A027187 counts partitions with even length/max, ranked by A028260/A244990.
%Y A031215 lists even-indexed primes.
%Y A055396 selects least prime index.
%Y A056239 adds up prime indices.
%Y A058696 counts partitions of even numbers, ranked by A300061.
%Y A061395 selects greatest prime index.
%Y A066207 lists numbers with all even prime indices.
%Y A112798 lists the prime indices of each positive integer.
%Y Cf. A026804, A035363, A036554, A160786, A244991, A257991, A257992, A300272, A300063, A340854/A340855.
%K nonn
%O 1,1
%A _Gus Wiseman_, Feb 13 2021