login
A341412
a(n) = (Sum_{k=1..6} k^n) mod n.
5
0, 1, 0, 3, 1, 1, 0, 3, 0, 1, 10, 7, 8, 7, 6, 3, 4, 13, 2, 15, 0, 3, 21, 19, 1, 13, 0, 7, 21, 1, 21, 3, 12, 23, 21, 31, 21, 15, 12, 35, 21, 13, 21, 31, 36, 45, 21, 19, 0, 1, 33, 39, 21, 31, 46, 35, 42, 33, 21, 55, 21, 29, 0, 3, 46, 49, 21, 31, 27, 21, 21, 67, 21, 17
OFFSET
1,4
LINKS
FORMULA
a(n) = A001553(n) mod n.
a(A056745(n)) = 0.
MAPLE
a:= n-> add(i&^n, i=1..6) mod n:
seq(a(n), n=1..100); # Alois P. Heinz, Feb 11 2021
MATHEMATICA
a[n_] := Mod[Sum[k^n, {k, 1, 6}], n]; Array[a, 100] (* Amiram Eldar, Feb 11 2021 *)
Table[Mod[Total[Range[6]^n], n], {n, 100}] (* Harvey P. Dale, Dec 02 2023 *)
PROG
(PARI) a(n) = sum(k=1, 6, k^n)%n;
CROSSREFS
(Sum_{k=1..m} k^n) mod n: A096196 (m=2), A341409 (m=3), A341410 (m=4), A341411 (m=5), this sequence (m=6), A341413 (m=7).
Sequence in context: A343006 A085565 A216677 * A196057 A058395 A035694
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Feb 11 2021
STATUS
approved