login
A341379
E.g.f. A(x) satisfies: A(x) = sqrt( Sum_{n>=0} (x^n/n!) * exp(x*A(x)^n) ).
1
1, 1, 1, 4, 19, 161, 1486, 18922, 268045, 4609873, 88133356, 1924339616, 46268487739, 1231273623373, 35673887461486, 1123381181903086, 38121770504978521, 1389537141448788353, 54120199536768401272, 2245165871933836841788
OFFSET
0,4
COMMENTS
The sequence is surprisingly regular. Conjectures:
(1) a(4*n) and a(4*n+1) are odd, a(4*n+2) and a(4*n+3) are even, for n >= 1.
(2) a(n) is not divisible by 3 for n >= 0.
LINKS
EXAMPLE
E.g.f.: A(x) = 1 + x + x^2/2! + 4*x^3/3! + 19*x^4/4! + 161*x^5/5! + 1486*x^6/6! + 18922*x^7/7! + 268045*x^8/8! + 4609873*x^9/9! + 88133356*x^10/10! + ...
such that
A(x)^2 = exp(x) + x*exp(x*A(x)) + x^2*exp(x*A(x)^2)/2! + x^3*exp(x*A(x)^3)/3! + x^4*exp(x*A(x)^4)/4! + x^5*exp(x*A(x)^5)/5! + ...
RELATED SERIES.
A(x)^2 = 1 + 2*x + 4*x^2/2! + 14*x^3/3! + 76*x^4/4! + 592*x^5/5! + 5794*x^6/6! + 70730*x^7/7! + 1019456*x^8/8! + 17176400*x^9/9! + 329143714*x^10/10! + ...
log(A(x)) = x + 3*x^3/3! + 6*x^4/4! + 100*x^5/5! + 645*x^6/6! + 10731*x^7/7! + 132328*x^8/8! + 2526336*x^9/9! + 46051785*x^10/10! + ...
PROG
(PARI) {a(n) = my(A=1 +x*O(x^n)); for(i=1, n,
A = sqrt( sum(m=0, n, x^m/m! * exp(x*A^m +x*O(x^n)) ) ));
n!*polcoeff(A, n)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Sequence in context: A203010 A362380 A249785 * A155804 A366699 A292167
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 19 2021
STATUS
approved